Cleveland Clinic researchers identify potential approach to treat heart disease through the gut

December 17, 2015

Cleveland Clinic researchers have demonstrated - for the first time -- that targeting microbes in the gut may prevent heart disease brought on by nutrients contained in a diet rich in red meat, eggs and high-fat dairy products.

This novel approach centers around the research team's previous discovery that TMAO - trimethylamine N-oxide, a byproduct formed in the gut during digestion of animal fats - is linked to atherosclerosis and heart disease. Now, the team has identified a naturally occurring inhibitor called DMB - 3,3-dimethyl-1-butanol, found in some cold-pressed extra virgin olive oils and grape seed oils - that reduced levels of TMAO and reduced atherosclerosis in mice.

This discovery may represent a potential new therapeutic approach for the prevention of heart disease, the No. 1 killer in the United States, as well as other metabolic diseases linked to gut microbes, such as diabetes.

The current research will be published both online and in the Dec. 17 print edition of Cell.

The link between TMAO, gut microbes and heart disease was first discovered four years ago by the same investigative team, led by Stanley Hazen, M.D., Ph.D., Chair of the Department of Cellular & Molecular Medicine in the Lerner Research Institute and section head of Preventive Cardiology & Rehabilitation in the Miller Family Heart & Vascular Institute at Cleveland Clinic. Zeneng Wang, Ph.D., first author on the manuscript, is also a member in the Department of Cellular & Molecular Medicine in the Lerner Research Institute.

"Many chronic diseases like atherosclerosis, obesity and diabetes are linked to gut microbes," said Dr. Hazen. "These studies demonstrate the exciting possibility that we can prevent or retard the progression of diet-induced heart diseases starting in the gut. This opens the door in the future for new types of therapies for atherosclerosis, as well as other metabolic diseases."

TMAO is a gut metabolite formed during the digestion of the nutrients choline, phosphatidylcholine (lecithin) and carnitine, which are abundant in animal products. Blood TMAO levels are associated with heightened risk of heart attacks, stroke and death in clinical studies. Carnitine is abundant in red meat and liver, while choline and lecithin are abundant in beef, lamb, liver, egg yolk and high-fat dairy products.

The present study suggests that targeted inhibition of the first step in TMAO generation, commensal microbial trimethylamine (TMA) production, can help to prevent diet-induced atherosclerosis. The research team inhibited TMA production using 3,3-dimethyl-1-butanol (DMB) in mice fed a high choline or carnitine diet. The mice treated with the inhibitor had less TMAO and developed less atherosclerosis. DMB is not an antibiotic. This important fact suggests that a treatment could target a specific microbial pathway while protecting the gut flora and avoiding antibiotic overuse and resistance, which is a worldwide health crisis.

"We were able to show that 'drugging the microbiome' is an effective way to block this type of diet-induced heart disease. The inhibitor prevents formation of a waste product produced by gut microbes, leading to lowering of TMAO levels and prevention of diet-dependent atherosclerosis." said Dr. Hazen. "This is much like how we use statins to inhibit cholesterol synthesis in human cells."

According to the Centers for Disease Control and Prevention, heart disease kills about 610,000 in the United States annually, accounting for one in every four deaths. It's the leading cause of the death in the U.S. for both men and women.
-end-
This research was supported by grants from the National Institutes of Health, the Office of Dietary Supplements and the American Heart Association.

About Cleveland Clinic

Cleveland Clinic is a nonprofit multispecialty academic medical center that integrates clinical and hospital care with research and education. Located in Cleveland, Ohio, it was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation. Cleveland Clinic has pioneered many medical breakthroughs, including coronary artery bypass surgery and the first face transplant in the United States. U.S.News & World Report consistently names Cleveland Clinic as one of the nation's best hospitals in its annual "America's Best Hospitals" survey. More than 3,000 full-time salaried physicians and researchers and 11,000 nurses represent 120 medical specialties and subspecialties. The Cleveland Clinic health system includes a main campus near downtown Cleveland, eight community hospitals, more than 75 Northern Ohio outpatient locations, including 16 full-service Family Health Centers, Cleveland Clinic Florida, the Lou Ruvo Center for Brain Health in Las Vegas, Cleveland Clinic Canada, and, scheduled to begin seeing patients in 2015, Cleveland Clinic Abu Dhabi. In 2012, there were 5.1 million outpatient visits throughout the Cleveland Clinic health system and 157,000 hospital admissions. Patients came for treatment from every state and from more than 130 countries. Visit us at http://www.clevelandclinic.org. Follow us at http://www.twitter.com/ClevelandClinic.

About the Lerner Research Institute

The Lerner Research Institute (LRI) is home to Cleveland Clinic's laboratory, translational and clinical research. Its mission is to promote human health by investigating in the laboratory and the clinic the causes of disease and discovering novel approaches to prevention and treatments; to train the next generation of biomedical researchers; and to foster productive collaborations with those providing clinical care. In 2014, LRI researchers published nearly 600 articles in high-impact biomedical journals (top 10% of all biomedical journals). LRI's total annual research expenditure was $255 million in 2014 (with $98 million in competitive federal funding). More than 2,000 people (including approximately 175 principal investigators, 200 postdoctoral fellows, and about 170 graduate students) in 13 departments work in research programs focusing on cardiovascular, cancer, neurologic, musculoskeletal, allergic and immunologic, eye, metabolic, and infectious diseases. The LRI has more than 700,000 square feet of lab, office, and scientific core services space. LRI faculty oversee the curriculum and teach students enrolled in the Cleveland Clinic Lerner College of Medicine (CCLCM) of Case Western Reserve University - training the next generation of physician-scientists. Institute faculty also participate in multiple doctoral programs, including the Molecular Medicine PhD Program, which integrates traditional graduate training with an emphasis on human diseases. The LRI is a significant source of commercial property, generating 66 invention disclosures, 4 licenses, and 50 patents in 2014.

Editor's Note: Cleveland Clinic News Service is available to provide broadcast-quality interviews and B-roll upon request.

Cleveland Clinic

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.