Nav: Home

New model more accurately tracks gases for underground nuclear explosion detection

December 17, 2015

LOS ALAMOS, N.M., December 17, 2015--Scientists at Los Alamos National Laboratory have developed a new, more thorough method for detecting underground nuclear explosions (UNEs) by coupling two fundamental elements--seismic models with gas-flow models--to create a more complete picture of how an explosion's evidence (radionuclide gases) seep to the surface. Their findings will appear in today's edition of the journal Nature's Scientific Reports in a paper titled, "Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks."

"The research is novel because it represents an integrated science approach," said Dale Anderson, the project lead and co-author of the paper. "Our field has never integrated seismology and the seismic processes that create fracture pathways with our nuclear-waste-remediation experts that know how radionuclides get through to the rock. You can't do gas seepage unless you understand the pipes and the size of the pipes that go to the surface of the earth. The solution to the problem could not have been advanced without the significant integration of these two sciences."

Underground nuclear weapon testing produces radionuclide gases that may seep to the surface, which is affected by many factors. These include fractures in the rock caused by the explosion's shock waves that create pathways for the gas to escape plus the effect of changes in atmospheric pressure that affect the gases' movement.

Atmospheric pumping of gas through explosion-fractured rock is investigated using a new, sequentially coupled hydrodynamic rock damage/gas transport model. Previous models used a simplified approach, modeling how the gas flows but not coupling that with the explosion rock fracture models through which the gases escape: the seismology and damage. There are major differences between predictions using a realistic fracture network and prior results that did not couple models. For example, simplified fracture models produced some predictive information about the gas movement, but they did not provide the directionally dependent information--that is, whether the gas moved horizontally or upwards through the rock. Thus the new calculations are able to give a better idea of how much gas may be migrating horizontally away from the location of underground explosions using knowledge about atmospheric conditions (e.g., the barometric pressure that creates a vacuum) and seasonal variabilities in different regions.

This team's research investigated the effects of the fracture network on late-time seepage (weeks to months) of radionuclide gases that migrate through explosion-enhanced fracture networks. The simulations were created for one kiloton UNEs in granite and tuff at burial depths of 125, 250 and 390 meters. Rock damage was simulated in a two-dimensional axisymmetric model using the CASH (CAmpell-SHashkov) hydrocode, a computer code for modeling shock propagation. Barometric data, of great importance to the accuracy of the models and simulations, were selected from the varied climates of Colorado, Alaska and Hawaii across different seasons and modeled with FEHM (Finite Element Heat and Mass transfer code) developed at LANL. Rather than a generic mathematical model, this research included first-principle seismology, chemistry and experimental data to improve the ensemble model.

Predicting the travel time, window of opportunity for detection and concentration of radionuclide gases from UNEs is of considerable importance to explosion monitoring.

In addition to nuclear explosion monitoring, this team's coupled model could be applied to other geophysical systems that produce fractures with subsequent flow, such as hydraulic fracturing for fossil fuels, wastewater injection, mine explosions and damaged rock zones around excavations. The gas transport results are relevant to other applications, such as radon and methane migration, soil vapor extraction for cleanup of contaminated sites and landfill gas migration.
The Los Alamos research team comprises Team Leader Anderson, Philip Stauffer, Chris Bradley, Earl Knight, Esteban Rougier and first-author Amy Jordan (now at Neptune and Company in Los Alamos). Los Alamos Computational Earth Science Group Leader Carl Gable supported the team's use of the Los Alamos Grid Toolbox (LaGriT) unstructured finite element mesh generation for simulation development. The United States' Defense Threat Reduction Agency (DTRA) funded this research.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

DOE/Los Alamos National Laboratory

Related Nuclear Articles:

US nuclear regulators greatly underestimate potential for nuclear disaster
The US Nuclear Regulatory Commission relied on faulty analysis to justify its refusal to adopt a critical measure for protecting Americans from nuclear-waste fires at dozens of reactor sites around the country, according to an article in the May 26 issue of Science magazine.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
New path suggested for nuclear fusion
Scientists at Rice University, the University of Illinois at Urbana-Champaign and the University of Chile offer a glimpse into a possible new path toward the production of energy through nuclear fusion.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Researchers model the way into a nuclear future
The main type of nuclear fuel is the uranium oxide pellet composition.
Nuclear CSI: Noninvasive procedure could identify criminal nuclear activity
Determining if an individual has handled nuclear materials is a challenge national defense agencies currently face.
A new method to help solve the problem of nuclear waste
The article, published recently in Open Chemistry may lead to the development of a process to remove uranium from wastewater at the front-end of the nuclear fuel cycle, or even extracting natural uranium from sea water.
Nuclear puzzle may be clue to fifth force
In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unraveling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature.
New approach to nuclear structure, freely available
The atomic nucleus is highly complex. Understanding this complexity often requires a tremendous amount of computational power.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Nuclear Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...