Oceanographers use super-computers to help farmers in Bangladesh

December 17, 2015

A computer model that aims to provide physical information on the Bangladesh delta to policy makers there, has received the 'impact' award from the national super-computing facility, ARCHER. This is the first model to link the open ocean with the limit of tidal interaction in Bangladesh, and has been produced by the National Oceanography Centre (NOC) scientist Dr Lucy Bricheno using the ARCHER facility.

This model predicts changes in tidal water level and salinity in the delta region, and could be used to make decisions about how to manage the physical environment, such as where to take irrigation water from and what crops to grow.

Future scenarios forecast by the model show the tidal range increasing by up to half a metre in places, which could see a large area of the delta flooded during high tide; affecting farmland, and the Sundarbans mangrove forests (a UNESCO world heritage site)

Dr Bricheno said "I am really pleased that this award has recognised the important potential social and economic impacts of this model.....this region is home to large numbers of people whose wellbeing is critically dependant on the land, and so are vulnerable to changes in the physical environment. By providing high quality evidence and forecasts, the outputs of the model could really help policy makers to make more informed decisions about how to best manage that environment.

What was interesting about the tidal change evident in the model is that it had a complex spatial pattern - not just rising everywhere. This is important because it wouldn't be captured in a coarse ocean model - we need to simulate the whole delta."

The model also showed that in general the west of the delta and the Sundarbans mangrove forest got saltier, particularly during the dry season, which has important implications for the health of the forest and any crops planted there. The western part of the delta is also home to some of the poorest farmers in Bangladesh and the habitat of the Royal Bengal tiger.

The model uses and produces high-resolution 3-D maps of the delta, its rivers, and the Indian Ocean. Bathymetry data is used in conjunction with information describing river discharge, ocean tides, water temperature and salinity from other models. However, since the model is complex, and of high resolution (containing around 2 million nodes), the run-time is around one week per year of data. Therefore the large 'super-computing' power offered by the ARCHER supercomputing national facility is required.

Dr Judith Wolf, who is leading the NOC's contribution to this project, called ESPA Deltas, said "This international collaborative research is pushing oceanography into new areas, working further inland than ever (to reach the limit of tidal penetration), and leading us to collaborations with human geographers and social scientists.

ESPA Deltas investigates how the bio-physical environment of the delta impacts on human population and livelihood for some of the poorest people on the planet. The NOC's role within this international multidisciplinary project is to contribute world-leading expertise in hydrodynamic modelling.

To watch an animation taken from this model click here http://bit.ly/1O8zPTK.

National Oceanography Centre, UK

Related Computer Model Articles from Brightsurf:

Computer model explains altered decision making in schizophrenia
Scientists have built a computer 'brain circuit', or artificial neural network, that mirrors human decision-making processes and sheds light on how circuits might be altered in psychiatric diseases.

Computer model shows how COVID-19 could lead to runaway inflammation
New study addresses a mystery first raised in March: Why do some people with COVID-19 develop severe inflammation?

Computer model predicts how drugs affect heart rhythm
UC Davis Health researchers have developed a computer model to screen drugs for unintended cardiac side effects, especially arrhythmia risk.

Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.

Computer model helps make sense of human memory
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) and the RIKEN Center for Brain Science have created an artificial network to simulate the brain, demonstrating that tinkering with inhibitory circuits leads to extended memory.

Computer model could help test new sickle cell drugs
A new computer model that captures the dynamics of the red blood cell sickling process could help in evaluating drugs for treating sickle cell disease.

Novel computer model supports cancer therapy
Researchers from the Life Sciences Research Unit (LSRU) of the University of Luxembourg have developed a computer model that simulates the metabolism of cancer cells.

Reverse-engineered computer model provides new insights into larval behavior
Scientists have developed a new approach to describe the behaviors of microscopic marine larvae, which will improve future predictions of how they disperse and distribute.

New computer-aided model may help predict sepsis
Can a computer-aided model predict life-threatening sepsis? A model developed in the UK that uses routinely collected data to identify early symptoms of sepsis, published in CMAJ, shows promise.

'NarcoLogic' computer model shows unintended consequences of cocaine interdiction
Efforts to curtail the flow of cocaine into the United States from South America have made drug trafficking operations more widespread and harder to eradicate.

Read More: Computer Model News and Computer Model Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.