Nav: Home

Multiple myeloma drug could revolutionize treatment for sickle cell disease

December 17, 2015

Manhasset, NY - An established drug for recurrent multiple myeloma might effectively be repurposed to improve the survival and day-to-day lives of patients with devastating sickle cell disease, according to revealing new research by a Feinstein Institute for Medical Research scientist.

The study, by Lionel Blanc, PhD, an assistant investigator at the Feinstein Institute, will be published Dec. 17 in the journal Blood. Dr. Blanc's research, performed in collaboration with the New York Blood Center, Yale School of Medicine and University of Montpellier in France, was the first to identify how the drug pomalidomide increases production of fetal hemoglobin, known to interfere with the so-called "sickling" of red blood cells implicated in sickle cell disease (SCD).

Illuminating pomalidomide's mechanism of action offers proof of concept that the US Food and Drug Administration (FDA)-approved medication could potentially be used to treat SCD, representing better outcomes compared to current drug treatment for the 100,000 Americans with SCD, an inherited disorder causing poor oxygen delivery, organ damage and even death.

"We knew the drug would make fetal hemoglobin, but we didn't know to what extent or how. That was the goal of the study," explained Dr. Blanc, also an assistant professor of molecular medicine and pediatrics at Hofstra North Shore-LIJ School of Medicine and an Allied World St. Baldrick's Scholar.

"We can also say something else - that hydroxyurea, the only FDA-approved drug for sickle cell anemia, was less effective than pomalidomide and appeared to act through a different mechanism of action," he added. "The current therapy is good, but not everyone responds equally to hydroxyurea, and what we hope with pomalidomide is to improve this."

Pomalidomide, a derivative of thalidomide used in advanced cases of the cancer multiple myeloma, works by killing malignant plasma cells. But Dr. Blanc and his colleagues demonstrated in the new research, performed on stem cells taken from five SCD patients and 120 normal controls, how pomalidomide also generated fetal hemoglobin, the fetal version of the protein in red blood cells that carries oxygen to body tissues.

In patients with congenital conditions producing anemia such as SCD and beta-thalassemia, fetal hemoglobin is normal, but adult hemoglobin - produced after birth - is abnormal. Therefore, reversing their production of adult hemoglobin back to fetal hemoglobin can reverse the course of their disease.

In addition to the 100,000 US residents with SCD, the condition also affects millions globally. "I would remind people that anemia impacts 1.6 billion people worldwide, making it a global economic burden," Dr. Blanc notes.

Dr. Blanc and his colleagues in the Division of Hematology/Oncology at Cohen Children's Medical Center of New York plan to launch a clinical trial in the near future in collaboration with other institutions to test pomalidomide, which is taken orally, in young adults with SCD.

Currently, the only potential cures for SCD are gene therapy, still in the experimental stage, or stem cell transplant, but these resource-intense treatments aren't available to the vast majority of patients, particularly in the developing world.

"Our hope is to alleviate the symptoms of sickle cell disease by using a pill that could be made available to almost all patients, worldwide," Dr. Blanc said.
-end-
About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including lupus, Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, medicinal chemistry, and bioelectronic medicine. The Feinstein Institute, part of the North Shore-LIJ Health System, soon to be Northwell Health, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers. For more information, visit FeinsteinInstitute.org.

Northwell Health

Related Red Blood Cells Articles:

Red blood cell donor pregnancy history not tied to mortality after transfusion
A new study has found that the sex or pregnancy history of red blood cell donors does not influence the risk of death among patients who receive their blood.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Red-blood-cell 'hitchhikers' offer new way to transport drugs to specific targets
A new drug-delivery technology which uses red blood cells to shuttle nano-scale drug carriers, called RBC-hitchhiking, has been found in animal models to dramatically increase the concentration of drugs ferried precisely to selected organs,
Novel gene in red blood cells may help adult newts regenerate limbs
Adult newts can repeatedly regenerate body parts. Researchers from Japan, including the University of Tsukuba, and the University of Daytona, have identified Newtic1, a gene that is expressed in clumps of red blood cells in the circulating blood.
Bristol researchers use gene editing to improve red blood cell transfusion compatibility
Synthetic biologists at the University of Bristol have succeeded in generating laboratory-made red blood cells with rare blood group types that could one day be used to help patients who cannot be matched with donor blood.
Healthy red blood cells owe their shape to muscle-like structures
The findings could shed light on sickle cell diseases and other disorders where red blood cells are deformed.
A breakthrough in our understanding of how red blood cells develop
For the first time, cellular machines called ribosomes -- which create proteins in every cell of the body -- have been linked to blood stem cell differentiation.
Decrease seen in red blood cell, plasma transfusions in US
The frequency of red blood cell and plasma transfusions decreased among hospitalized patients in the United States from 2011 to 2014.
NIH researchers find a potential treatment for disorders involving excess red blood cells
Researchers at the National Institutes of Health have cured mice with Chuvash polycythemia, a life-threatening disorder that involves the overproduction of red blood cells.
The amazing flexibility of red blood cells
Red blood cells must be flexible to squeeze through tiny capillaries to deliver oxygen.
More Red Blood Cells News and Red Blood Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab