Nav: Home

Pinpoint targeting instead of shotgun approach

December 17, 2015

Integrins help cells communicate with and adapt to their environment. Also cancer cells depend on their properties to survive and spread throughout the body. Now scientists at the Technical University of Munich (TUM) have successfully developed a small, highly active molecule that binds to a specific integrin that operates in many types of cancer. In the future it may allow patient-specific diagnoses and subsequent targeted treatment of tumor cells.

Integrins are among the most important links between a cell and its outside world. They are found on the surface of cells and anchor them to other cells or substances in the space between cells, the so-called 'extracellular matrix.' This direct contact not only holds cells within their groups, it also allows them to receive signals from the environment and react to them -- for example, by growing, dividing or leaving a group.

When a special protein in the extracellular matrix, a so-called ligand, bonds to integrin, various signal cascades are initiated inside the cell. Without integrins cells would be 'blind', 'deaf' and 'dumb' -- and, as such, hardly able to survive.

The aim: characterizing cancer cells

But, cancer cells deploy integrins for their very own purposes. They use them to break loose from tumor tissue, penetrate blood vessels and ultimately lodge themselves into other tissue as metastases in the lungs or bones, for example. However, precisely which of the many integrin subtypes is at work is very individual and can vary from patient to patient.

"If we knew which integrin subtypes are active in the specific cancer of a given patient, we could attack these using appropriate active agents," explains Tobias Kapp, doctoral candidate in Professor Horst Kessler's workgroup at the TUM Institute for Advanced Study and the TUM Department of Chemistry. "For this we need compounds that attach to a single integrin as specifically as possible."

Now Kessler, Kapp and his colleague Dr. Oleg Maltsev have successfully developed just such a ligand: A ring-shaped compound, which attaches to the alphaVbeta6 integrin, that appears in many different kinds of cancer and also plays a large role in fibroses.

A promising active agent

The new molecule fulfills many requirements of a potential medical agent. It selectively docks only to the alphaVbeta6 integrin -- an important prerequisite for the future deployment as a medication with only minimal side effects.

In addition, it attaches to most of the alphaVbeta6 integrins even at relatively low concentrations, making it effective even in small doses. It is also durable due to its cyclical structure and, in contrast to integrin ligands found in nature, breaks down only slowly in blood plasma.

The new ligand has one more important characteristic in store: One of its amino acids, a lysine, can be used as a 'hitch' for docking other substances to the compound. "This is of great significance if you want to use the ligands as a diagnostic tool," explains Kapp. "For example, you can then dock substances that can be made visible using medical imaging equipment."

In this way tumors can be characterized and then fought using very specifically targeted therapies. If successful, this would represent a great advance in contrast with conventional cancer therapies, which are usually very broadly applied and thus also damage healthy cells.

Step by step to the optimal binding partner

The scientists used a protein of the foot-and-mouth disease virus as a template for the ligand. This natural alphaVbeta6 ligand uses an alpha-helical structure to bind to the integrin. The researchers reconstructed the helix using a small ring structure comprising nine amino acids.

Using a multi-stage selection process they tested numerous variants until the most suitable molecule was identified. To this end, they also used a proprietarily developed new technology in which the side chain of the amino acid arginine is used as a kind of molecular switch. This influences which integrin subtype the ligand attaches to selectively.

"We now know the form of the lock and we know how to make the matching key," says Professor Kessler. "This opens the door to a personalized medicine with which we can take patient-specific action against tumor cells."
The results were achieved in the context of a research collaboration between the TUM Department of Chemistry and the TUM University Hospital Klinikum Rechts der Isar, the Università di Napoli Federico II and the Secondo Università di Napoli. The work was funded by a Reinhard Koselleck project and through the Cluster of Excellence 'Center for Integrated Protein Research Munich' (CIPSM) of the German Research Council (DFG). The structure of the integrin ligand was determined at the Bavarian NMR Center on the Garching campus.


O. V. Maltsev, U. K. Marelli, T. G. Kapp, F. Saverior Di Leva, S. Di Maro, M. Nieberler, U. Reunig, M. Schwaiger, E. Novellino, L. Marinelli, H. Kessler, Stable Peptides Instead of Stapled Peptides: Highly Potent alphaVbeta6-selective Integrin Ligands, Angewandte Chemie, DOI: 10.1002/anie.201508709

T. G. Kapp, M. Fottner, O. V. Maltsev, H. Kessler, Small cause, great impact - modification of the guanidine group in RGD controls integrin subtype selectivity, Angewandte Chemie, DOI: 10.1002/anie.201508713

Technical University of Munich (TUM)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".