Nav: Home

Prostate cancer discovery may make it easier to kill cancer cells

December 17, 2015

A newly discovered connection between two common prostate cancer treatments may soon make prostate cancer cells easier to destroy. Drugs that could capitalize on the discovery are already in the pipeline, and a clinical trial to test whether the finding could improve treatments for prostate cancer patients could be only a few years away.

The discovery also may allow doctors to better determine which forms of treatment will most benefit individual patients, and there may be implications for other forms of cancer as well.

An Unexpected Connection

Prostate cancer is the second-leading cause of cancer death among American men. Common treatments include radiation and androgen ablation, and researchers at the University of Virginia School of Medicine have found an unexpected link between the two.

The researchers determined that a cellular signaling pathway activated by radiation - to halt cell division and allow repair of damage to DNA - also controls cells' sensitivity to androgen, a male hormone prostate cancer cells need for growth. Androgen and androgen sensitivity, in turn, can affect how susceptible prostate cancer cells (and possibly other cancer cells) are to the radiation treatment used to kill them.

"Now we have a novel link between two different standards of care for advanced prostate cancer," said UVA researcher Dan Gioeli, PhD, of the Department of Microbiology, Immunology and Cancer Biology and the UVA Cancer Center. "For locally advanced prostate cancer, radiation therapy is one of the standards of care, and that induces DNA damage, which would activate this pathway. Another standard of care for metastatic prostate cancer is androgen ablation, and that acts to inhibit androgen receptor activity. Now we have a new molecular understanding of how those two different standards of care might be connected."

Better Prostate Cancer Treatment

With this new information, doctors may be able to manipulate the signaling pathway, Checkpoint Kinase 2, to make it easier to kill prostate cancer cells. By blocking the signaling process, for example, they might sensitize cancer cells to the radiation intended to destroy them. (Gioeli and his colleagues believe that this signaling may be lost as prostate cancer advances, helping to explain why the disease inevitably becomes resistant to androgen deprivation therapy.)

Major pharmaceutical companies are already developing drugs to inhibit CHK kinases, and Gioeli hopes that this will speed the clinical trial testing that could lead to better prostate cancer treatments. Testing in people might begin in only three to five years, though it may take longer depending on how the work progresses, he said.

"The next steps are to see whether our predictions about ... targeting this pathway could enhance cancer-killing in response to radiation or androgen ablation," Gioeli said. "Perhaps it would lead to a three-way combination where we would be looking at how androgen withdrawal sensitizes tumor cells to radiation therapy and whether we can further enhance that sensitization by inhibiting this pathway."
-end-
Findings Published

The findings have been published online in the journal Cancer Research. The article was written by Huy Q. Ta, Melissa L. Ivey, Henry F. Frierson Jr., Mark R. Conaway, Jaroslaw Dziegielewski, James M. Larner and Gioeli.

University of Virginia Health System

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".