Nav: Home

Progress toward creating broad-spectrum antiviral

December 17, 2015

UW researchers working in collaboration with Kineta Inc. and the University of Texas at Galveston have shown that making a drug-like molecule to turn on innate immunity can induce genes to control infection in several -known viruses. The findings being published in the Journal of Virology Dec. 18 show promising evidence for creating a broad spectrum antiviral that can suppress a range of RNA viruses, including West Nile, dengue virus, hepatitis C, influenza A, respiratory syncytial, Nipah, Lassa and Ebola.

"Our study shows that our compound has an antiviral effect against all these viruses," said Michael Gale Jr., UW professor of immunology and director of the UW Center for Innate Immunity and Immune Disease.

Gale said the findings are the first he knows of which show that a small molecule can trigger innate immunity through a molecule present in all our cells known as RIG-I.

RIG-I is a cellular protein known as pathogen recognition receptor. These receptors function to detect viral RNA and signal an innate immune response inside the cell that is essential for limiting and controlling viral infections. This signaling then induces the expression of many innate immune and antiviral genes and the production of antiviral gene products, pro-inflammatory cytokines, chemokines and interferons.

"These products act in concert to suppress and control virus infection," the researchers wrote.

The researchers said inducing signaling to activate the innate immune response to control virus infection has been tested successfully in cells and in mice. The next step would be to test dosing and stability in animal models and then in humans - a process that could take between two and five years, said Gale.

Currently, there are no known broad spectrum antiviral drugs, and few cures for infection by RNA viruses, much less much effective treatments. RNA viruses pose a significant public health problem worldwide because of their high mutation rate that allows them to escape the immune response, and they are a frequent cause of emerging and re-emerging viral infections. West Nile virus infections, for example, started in the USA in 2000 and remerged again in 2012. Moreover, the World Health Organization reports about 50 million to 100 million new cases of dengue fever yearly and 22,000 deaths caused by the related dengue virus. Dengue is now present in the southern U.S.

Hepatitis C, which is transmitted through the blood, infects about 3 million-4 million people each year and about 150 million people are chronically infected and at risk for developing liver cirrhosis or liver cancer, according to the paper. Researchers said direct acting antiviral drugs have been developed to control hepatitis C and show promise of long-term cure of infection but treatment of disparate hepatitis C genotypes remains a concern, and viral mutation to drug resistance is an underlying concern with prolonged use of these drugs. Also, the researchers noted, the cost of the drugs are exorbitant, which make them unaffordable to most patients.

Shawn Iadonato, the chief scientific officer at Kineta, a Seattle-based biotechnology firm, said there is tremendous interest in triggering innate immunity for a number of reasons. One, he said, is because some viral infections can't be treated by traditional antivirals, such as chronic hepatitis B infection. Also, by triggering innate immunity, the viruses will be much less likely to resist the drug actions because they are targeted to the cell through the actions of many different genes and not to the virus itself, thus making drug resistance much harder if not impossible to achieve.

The span of viruses that could be treated would also have a huge benefit globally since many RNA viruses - Ebola, Nipah, Lassa and dengue - affect mainly developing countries.

"It's routine for us to think of broad-spectrum antibiotics, but the equivalent for virology doesn't exist," said Iadonato.
-end-


University of Washington Health Sciences/UW Medicine

Related Hepatitis Articles:

Hepatitis C increasing among pregnant women
Hepatitis C infections among pregnant women nearly doubled from 2009-2014, likely a consequence of the country's increasing opioid epidemic that is disproportionately affecting rural areas of states including Tennessee and West Virginia.
WHO's Global Hepatitis Report sets baseline to eliminate viral hepatitis by 2030
The World Hepatitis Alliance today welcomes the publication of the first-ever Global Hepatitis Report by the World Health Organization (WHO), which includes new data on the prevalence and global burden of viral hepatitis.
Elimination of viral hepatitis by 2030: What's needed and how do we get there?
This first European Action Plan provides an important driver to aid countries in their fight against viral hepatitis, to which ECDC had the opportunity to contribute directly.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
Is Europe ready to eliminate viral hepatitis?
Currently, Europe records around 57,000 newly diagnosed acute and chronic cases of hepatitis B and C each year.
Why baby boomers need a hepatitis C screening
Hepatitis C affects a disproportionate amount of older Americans, born between 1945 and 1965.
Counterattack of the hepatitis B virus
The hepatitis B virus (HBV) infects liver cells. Drugs are available to treat HBV, but they rarely cure the infection, and so the virus typically returns after the treatment ends.
Hepatitis C tied to increased risk of Parkinson's
The hepatitis C virus may be associated with an increased risk of developing Parkinson's disease, according to a study published in the Dec.
The hepatitis A virus is of animal origin
The hepatitis A virus can trigger acute liver inflammation which generally has a mild course in small children but which can become dangerous in adults.
Modeling the helicase to understand hepatitis C
NS3 is an enzyme specific to the hepatitis C virus.

Related Hepatitis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".