Nav: Home

UZH scientists predict activity of human genes

December 17, 2015

Genetically identical cells do not always behave the same way. According to the accepted theory, the reason are random molecular processes - known as random noise. For decades this view has been underpinned by numerous experiments and theoretical models. Now the system biologists of the University of Zurich have made a momentous discovery: The spatial separation of human cells into a nucleus and cytoplasm creates some kind of passive filter. This filter suppresses the random noise and enables human cells to precisely regulate the activity of individual genes.

Observed more randomness in the nucleus

While the observations of Lucas Pelkmans and his team initially seemed at odds with current text-book knowledge, a second look revealed the missing explanation. During the activation of genes, the genetic information, which has been stored in DNA, becomes transcribed to messenger RNA. "We could perfectly predict the messenger RNA in the cytoplasm and discovered much more randomness within the nucleus" explains Nico Battich, coauthor and PhD student at Institute of Molecular Biology. "One could envision the nucleus to act as a leaky bucket that on the one hand withholds messenger RNA, but on the other hand enables a delayed and even outflow. Thus the activity of genes in the cytoplasm becomes highly robust against random noise during the formation of messenger RNA in the nucleus."

Smallest physiological details made visible

Thanks to their novel method, the Zurich scientists were the first ones who could study that many human genes. They managed to detect every single molecule that is produced by active genes. "Previously one could only study few genes and in many cases these genes had to be genetically modified by researchers" says PhD student Thomas Stoeger. "We realized that the activity of genes strongly differed between single cells, but could at the same time predict the activity for every single cell by visualizing subtle physiological details with microscopic dyes."

The findings of the Zurich scientists impact several fields. "For example, evolutionary biology, where the spatial separation of cells marks a milestone in the emergence of intelligent life. But also biotech-nology, where a precise control over artificial genes is desirable, and human medicine, if it should become possible to predict which malignant cells will respond to drugs." concludes Prof. Lucas Pelkmans.
-end-
Literature:

Nico Battich, Thomas Stoeger, Lucas Pelkmans. Control of Transcript Variability in Single Mammalian Cells. Cell. December 17, 2015. Doi: 10.1016/j.cell.2015.11.018

University of Zurich

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"