Nav: Home

'Treasure trove' of dinosaur footprints found in southern England

December 17, 2018

More than 85 well-preserved dinosaur footprints - made by at least seven different species - have been uncovered in East Sussex, representing the most diverse and detailed collection of these trace fossils from the Cretaceous Period found in the UK to date.

The footprints were identified by University of Cambridge researchers between 2014 and 2018, following periods of coastal erosion along the cliffs near Hastings. Many of the footprints - which range in size from less than 2 cm to over 60 cm across - are so well-preserved that fine detail of skin, scales and claws is easily visible.

The footprints date from the Lower Cretaceous epoch, between 145 and 100 million years ago, with prints from herbivores including Iguanodon, Ankylosaurus, a species of stegosaur, and possible examples from the sauropod group (which included Diplodocus and Brontosaurus); as well as meat-eating theropods. The results are reported in the journal Palaeogeography, Palaeoclimatology, Palaeoecology.

Over the past 160 years, there have been sporadic reports of fossilised dinosaur footprints along the Sussex coast, but no new major discoveries have been described for the past quarter century and the earlier findings were far less varied and detailed than those described in the current research.

The area around Hastings is one of the richest in the UK for dinosaur fossils, including the first known Iguanodon in 1825, and the first confirmed example of fossilised dinosaur brain tissue in 2016. However, trace fossils such as footprints, which can help scientists learn more about the composition of dinosaur communities, are less common in the area.

"Whole body fossils of dinosaurs are incredibly rare," said Anthony Shillito, a PhD student in Cambridge's Department of Earth Sciences and the paper's first author. "Usually you only get small pieces, which don't tell you a lot about how that dinosaur may have lived. A collection of footprints like this helps you fill in some of the gaps and infer things about which dinosaurs were living in the same place at the same time."

The footprints described in the current study, which Shillito co-authored with Dr Neil Davies, were uncovered during the past four winters, when strong storms and storm surges led to periods of collapse of the sandstone and mudstone cliffs.

In the Cretaceous Period, the area where the footprints were found was likely near a water source, and in addition to the footprints, a number of fossilised plants and invertebrates were also found.

"To preserve footprints, you need the right type of environment," said Davies. "The ground needs to be 'sticky' enough so that the footprint leaves a mark, but not so wet that it gets washed away. You need that balance in order to capture and preserve them."

"As well as the large abundance and diversity of these prints, we also see absolutely incredible detail," said Shillito. "You can clearly see the texture of the skin and scales, as well as four-toed claw marks, which are extremely rare.

"You can get some idea about which dinosaurs made them from the shape of the footprints - comparing them with what we know about dinosaur feet from other fossils lets you identify the important similarities. When you also look at footprints from other locations you can start to piece together which species were the key players."

As part of his research, Shillito is studying how dinosaurs may have affected the flows of rivers. In modern times, large animals such as hippopotamuses or cows can create small channels, diverting some of the river's flow.

"Given the sheer size of many dinosaurs, it's highly likely that they affected rivers in a similar way, but it's difficult to find a 'smoking gun', since most footprints would have just washed away," said Shillito. "However, we do see some smaller-scale evidence of their impact; in some of the deeper footprints you can see thickets of plants that were growing. We also found evidence of footprints along the banks of river channels, so it's possible that dinosaurs played a role in creating those channels."

It's likely that there are many more dinosaur footprints hidden within the eroding sandstone cliffs of East Sussex, but the construction of sea defences in the area to slow or prevent the process of coastal erosion may mean that they remained locked within the rock.
-end-
The research was funded by the Natural Environment Research Council (NERC).

University of Cambridge

Related Dinosaur Articles:

Japan's largest complete dinosaur skeleton discovered
The complete skeleton of an eight-meter-long dinosaur has been unearthed from marine deposits dating back 72 million years at Japan's northern island of Hokkaido, making it the largest dinosaur skeleton ever found in Japan, according to researchers.
First baby of a gigantic Oviraptor-like dinosaur belongs to a new species
First baby of a gigantic Oviraptor-like dinosaur belongs to a new species.
'Last African dinosaur' discovered in Moroccan mine
One of the last dinosaurs living in Africa before their extinction 66 million years ago has been discovered in a phosphate mine in northern Morocco.
Headless dinosaur reunited with its skull, one century later
Researchers at the University of Alberta have matched the headless skeleton to a Corythosaurus skull from the university's Paleontology Museum that had been collected in 1920 by George Sternberg to the headless dinosaur.
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
80-million-year-old dinosaur collagen confirmed
Utilizing the most rigorous testing methods to date, researchers from North Carolina State University have isolated additional collagen peptides from an 80-million-year-old Brachylophosaurus.
Our ancestors evolved faster after dinosaur extinction
Our ancestors evolved three times faster in the 10 million years after the extinction of the dinosaurs than in the previous 80 million years, according to UCL researchers.
New species of horned dinosaur with a spiked 'shield'
A chance fossil discovery in Montana a decade ago has led to the identification of an audacious new species of horned dinosaur, Spiclypeus shipporum, according to a study published May 18, 2016, in the open-access journal PLOS ONE by Jordan Mallon, from the Canadian Museum of Nature, Canada, and colleagues.
EARTH: Making tracks through the dinosaur diamond
EARTH Magazine travels through time to meet the major players of the Triassic, Jurassic and Cretaceous -- from sauropods and theropods to protomammals -- that created the rich tapestry of life in this region millions of years ago.
Canuckosaur! First Canadian 'dinosaur' becomes Dimetrodon borealis
A 'dinosaur' fossil originally discovered on Prince Edward Island has been shown to have steak knife-like teeth, and researchers from U of T Mississauga, Carleton University and the Royal Ontario Museum have changed its name to Dimetrodon borealis -- marking the first occurrence of a Dimetrodon fossil in Canada.

Related Dinosaur Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".