Protein police keep the immune system in check

December 17, 2018

Our immune systems defend our bodies against dangerous invaders and help clean up when damage is done. But if our bold protectors are left unsupervised, they sometimes do their jobs too well and end up harming healthy tissues. Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have now described how a specific transcription factor, which modulates gene expression, plays a critical role in keeping the immune system in line in mice.

The key transcription factor, known as JunB, helps control the activity of cells whose job it is to suppress immune activity. These cells are called effector regulatory T cells, or eTreg cells for short. The researchers found that JunB helps switch eTreg cells into their "active state" and promotes their immunosuppressive functions. Their results, published on December 17, 2018, in Nature Communications, could give important insight into the development of autoimmune disease and cancer immunosuppression.

"We found that JunB regulates select functions of eTreg cells, specifically in the lung and colon," said Dr. Shin-ichi Koizumi, co-first author of the study and a postdoctoral scholar in the Immune Signal Unit, led by Prof. Hiroki Ishikawa. "If we can manipulate JunB expression, we may be able to regulate tissue-specific immune responses. This could lead to the development of new therapies for cancer and autoimmune disease."

Koizumi led the study with his co-author Dr. Daiki Sasaki, another postdoctoral scholar in the unit. The researchers studied mutant mice to learn what would happen if eTreg cells lacked JunB. Without this key layer of regulation, mice appear to develop severe inflammation in their lungs and colons. This suggests that JunB helps prevent autoimmunity in a specific subset of organs, and without its watchful surveillance, the immune system will attack those tissues.

"Interestingly, in contrast to other Treg mutants, inflammation is restricted to these particular organs," said Prof. Ishikawa. "In the future, JunB expressed by eTregs may itself may be a therapeutic target for colon and lung cancers."

Tissue Specificity Key for Future Clinical Applications

In a previous study, the researchers reported that JunB helps control the differentiation of T helper cells, another subset of cells that regulate the immune system. They depleted JunB expression in mice for that experiment, as well, and noticed that eTreg cells levels dropped significantly in the colon. They hypothesized that JunB is not only important to T helper cells, but to eTreg cells, too.

Effector Treg cells begin as central Treg cells, or cTreg cells, until they are exposed to antigens -- proteins that label foreign substances in the body so the immune system can find them. cTreg cells then differentiate into eTreg cells, and in turn, significantly boost their JunB expression. The researchers found that, without JunB, eTreg cells are unable to accumulate in the colon and thus their numbers fall drastically.

In the lung and spleen, eTreg levels remained normal but the cells' function was compromised. Those tissues exhibited severe inflammation and autoimmunity because JunB wasn't present to rein in the host immune response.

Looking forward, the researchers want to learn exactly how JunB interacts with other transcription factors to keep the immune system at bay. With better understanding of the mechanism as a whole, scientists may someday be able to modulate immune responses in specific tissues. At present, treatments often affect immune responses across the entire body and lead to unfortunate side effects. Doctors need a more targeted approach.

"We want to completely elucidate the transcription program in eTreg cells," said Koizumi. "If we can induce a new transcription program in eTreg cells, we could potentially manipulate immune responses in various tissues and treat a range of cancers and autoimmune-related diseases."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.