Narrowing the universe in the search for life

December 17, 2018

Humankind's exploration of space has for years pondered one central question: Is there another world somewhere in the universe where human beings could survive?

And as astrophysicists and astronomers have searched for the answer, they've traditionally looked for a world that has water.

But Wendy Panero, professor of earth sciences at The Ohio State University, has developed a new way of thinking about a planet's habitability. What if, she wondered, the answer to habitability lies within the way rocks and water interact?

Panero presented her theory Dec. 12 at the fall meeting of the American Geophysical Union in Washington, D.C.

"We have traditionally looked for 'water worlds'--places where one-half to one-quarter of the weight of the planet is water," Panero said. "That seems like an optimal thing, to go looking for water."

Instead of just looking for water, Panero thinks, scientists should also look to the planet's atmosphere.

The Earth's atmosphere is stable and habitable in part because of carbon dioxide released when large tectonic plates under the Earth's crust shift and because of the weathering of rocks at the surface.

"You need something that allows volcanic rock to come back to the surface," Panero said. "It's a cycle."

Panero thinks the Earth's near-constant sea level over geologic time is based on the way water at the planet's surface interacts with shifting plates. The Earth's interior provides energy that powers the dynamics of plate tectonics, which in turn has kept the amount of water cycling between the surface and its atmosphere stable for eons. The weathering and erosion of silicate rock helps regulate carbon dioxide levels in the atmosphere, and is a key part of the process.

And though astrophysicists have traditionally searched for a world with water in the hopes of finding a world that can support life, Panero thinks there might be a way to evaluate the stuff of which a planet is made to determine if it could be habitable. The theory she presented Wednesday includes evaluating a planet's mass and radius, along with the composition of its star, which can be used to make predictions about the planet's interior and structure. In a universe of seemingly infinite planets, the theory could help narrow the field of planets that scientists look to for signs of life.

That could help save both time and money in the search for extraterrestrial life.

"It's a way of cutting down your sample set of where you're going to spend your expensive space telescope time," Panero said.
-end-
Panero led the presentation Wednesday along with Ohio State researchers Scott David Hull, Nicole E. Wahlstrom and Joseph Schulze, and Arizona State University researcher Cayman T. Unterborn.

Contact: Wendy Panero, panero.1@osu.edu

Written by: Laura Arenschield, 614-292-9475; Arenschield.2@osu.edu

Ohio State University

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.