Birds can mistake some caterpillars for snakes; can robots help? 

December 17, 2018

When a caterpillar disguises itself as a snake to ward off potential predators, it should probably expect to be treated like one.

This is exactly what happened in Costa Rica earlier this year, when researchers witnessed a hummingbird defending its nest from what it interpreted to be a snake, but was actually a larva of the moth Oxytenis modestia. The encounter is described in a new paper published in the Ecological Society of America's journal Ecology.

These moths -- sometimes called the dead-leaf moth or the Costa Rica leaf moth -- resemble flat dried leaves as adults. The caterpillars can inflate the top of their heads to expose a pair of eyespots. When disturbed, they raise their head up and move from side to side, increasing the snake-like appearance. In particular they resemble a green parrot snake, known to prey on nesting birds.

The attacking hummingbird's nest with eggs was about 10cm away from the caterpillar in a small tree. When the researchers went to look for an assumed snake, they instead found the caterpillar feeding on a leaf immediately above the nest.

"Hummingbirds have a few stereotypical styles of flying: visiting flowers, preying on swarms of tiny insects, chasing each other, and mating/territorial display flights," says lead author James H. Marden, professor with the Department of Biology at Pennsylvania State University. "Mobbing behavior directed against a threat to their nest is much less common but distinct and easy to recognize if you know their other flight behaviors... One can recognize this from a distance and only notice the source of their agitation upon close inspection."

Caterpillars and adults of a variety of butterflies and moths have eye-like spots that deter potential predators. Observations of how these eyespots affect animal interactions in natural settings are extremely rare.

The interaction took place on a strip of secondary growth between the Pacific and primary rainforest on the Osa Peninsula, Costa Rica. The authors believe that the comings and goings of the female rufous-tailed hummingbird (Amazilia tzacatl) around its nest may have disturbed the caterpillar, causing it to expose its eyespots, which in turn prompted the hummingbird to defend its nest using what is referred to as 'mobbing behavior' by birds -- darting flights and pecking at a threat, commonly snakes.

The caterpillar was unable to feed during the 26-minutes of nearly continuous attacks. Most of the bird's movements were cautious and exploratory, but included quick thrusts to peck or bite the eyespots (view video clip here).

Marden stated that it was difficult for either the bird or caterpillar to disengage from the standoff, with the hummingbird protecting its nest and the caterpillar just trying to finish its leafy meal. "A snake-like creature so near to its nest was too much of a distraction or threat to ignore for very long," he explained. "The caterpillar seemed more irreversibly committed. When a camouflaged animal reveals itself as threatening, it is committed and cannot easily go back to camouflage. Hence, I think that it had no choice but continue looking like a snake until the threat had passed."

Eventually the caterpillar gave up on eating and crawled away while still under attack, and the hummingbird resumed normal nesting behavior.

When birds exhibit this mobbing behavior targeting snake's eyes, it often ends with snakes being killed by repeated bites and pecks near the head and collar area. As for creatures that mimic snakes to protect themselves from being eaten, can they in turn protect themselves from this mimicry backfiring, such as in this encounter? Because the hummingbird behavior was typical anti-snake behavior, it can be considered replicable.

Marden is fascinated by this interaction, and he believes future studies of this behavior can be conducted using a tiny, caterpillar robot to experiment with eyespots.

"You'd want a cylindrical shape and green color, with the ability to rear up in the front and reveal an eyespot," he outlines. It should be remote controlled, light enough to attach to a leaf or stem, and wireless. "Many experiments have done this with clay or similar material, but those models lack the ability to combine eyespots with movement and behavior. That is what a robot could add."

With such a robot, researchers could vary the eye-like nature and contrast of spots on the head of the robot to test various responses of nest-defending birds. A study like this could definitively test the effects of eye-like versus other mimicry patterning for provoking or repelling defensive attacks.

The day following the initial encounter, the researchers found the caterpillar feeding on a leaf on the same plant, as far away from the nest as possible. It had some marks by the edge of the right eyespot that may be beak marks - apparently the caterpillar learned its lesson.
-end-
Journal Article

Marden, J.H., J.F.P. Carillo. 2018. "Anti-predator behavior by a nesting hummingbird in response to a caterpillar with eyespots." Ecology. DOI: 10.1002/ecy.2582

Authors
James H. Marden, Department of Biology, Pennsylvania State University
José Freiner Perez Carillo, Campanario Biological Station, Osa Peninsula, Costa Rica

Author contact
James H. Marden jhm10@psu.edu

The Ecological Society of America (ESA), founded in 1915, is the world's largest community of professional ecologists and a trusted source of ecological knowledge, committed to advancing the understanding of life on Earth. The 9,000 member Society publishes five journals and a membership bulletin and broadly shares ecological information through policy, media outreach, and education initiatives. The Society's Annual Meeting attracts 4,000 attendees and features the most recent advances in the science of ecology. Visit the ESA website at http://www.esa.org. Contact: Zoe Gentes, 202-833-8773 ext. 211, zgentes@esa.org

Ecological Society of America

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.