Scientists design new material to harness power of light

December 17, 2018

LOWELL, Mass. - Scientists have long known that synthetic materials - called metamaterials - can manipulate electromagnetic waves such as visible light to make them behave in ways that cannot be found in nature. That has led to breakthroughs such as super-high resolution imaging. Now, UMass Lowell is part of a research team that is taking the technology of manipulating light in a new direction.

The team - which includes collaborators from UMass Lowell, King's College London, Paris Diderot University and the University of Hartford -has created a new class of metamaterial that can be "tuned" to change the color of light. This technology could someday enable on-chip optical communication in computer processors, leading to smaller, faster, cheaper and more power-efficient computer chips with wider bandwidth and better data storage, among other improvements. On-chip optical communication can also create more efficient fiber-optic telecommunication networks.

"Today's computer chips use electrons for computing. Electrons are good because they're tiny," said Prof. Viktor Podolskiy of the Department of Physics and Applied Physics, who is the project's principal investigator at UMass Lowell. "However, the frequency of electrons is not fast enough. Light is a combination of tiny particles, called photons, which don't have mass. As a result, photons could potentially increase the chip's processing speed."

By converting electrical signals into pulses of light, on-chip communication will replace obsolete copper wires found on conventional silicon chips, Podolskiy explained. This will enable chip-to-chip optical communication and, ultimately, core-to-core communication on the same chip.

"The end result would be the removal of the communication bottleneck, making parallel computing go so much faster," he said, adding that the energy of photons determines the color of light. "The vast majority of everyday objects, including mirrors, lenses and optical fibers, can steer or absorb these photons. However, some materials can combine several photons together, resulting in a new photon of higher energy and of different color."

Podolskiy says enabling the interaction of photons is key to information processing and optical computing. "Unfortunately, this nonlinear process is extremely inefficient and suitable materials for promoting the photon interaction are very rare."

Podolskiy and the research team have discovered that several materials with poor nonlinear characteristics can be combined together, resulting in a new metamaterial that exhibits desired state-of-the-art nonlinear properties.

"The enhancement comes from the way the metamaterial reshapes the flow of photons," he said. "The work opens a new direction in controlling the nonlinear response of materials and may find applications in on-chip optical circuits, drastically improving on-chip communications."
-end-
The team's findings were recently published in Optica, the peer-reviewed research journal of The Optical Society.

UMass Lowell is a national research university located on a high-energy campus in the heart of a global community. The university offers its more than 18,000 students bachelor's, master's and doctoral degrees in business, education, engineering, fine arts, health, humanities, sciences and social sciences. UMass Lowell delivers high-quality educational programs, vigorous hands-on learning and personal attention from leading faculty and staff, all of which prepare graduates to be leaders in their communities and around the globe. http://www.uml.edu

University of Massachusetts Lowell

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.