Nav: Home

Physicists studied the influence of magnetic field on thin film structures

December 17, 2018

A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties. These systems can be used in various types of magnetic field sensors. The article of the team was published in the Journal of Magnetism and Magnetic Materials.

Magnetic materials are divided into several types depending on their reaction on an external magnetic field. For example, diamagnetic materialsbecome magnetized in opposite direction to the external field, while paramagnetic ones acquire the magnetic moment with the same direction as that of the field. Two more classes of magnetic materials - ferromagnetic and antiferromagnetic - are different because they are able to preserve magnetic properties even in the absence of an external field. Ferromagnetic materials possess a remnant magnetic moment and can be used as permanent magnets, while the magnetic moment of antiferromagnetic materials is equal to zero in the absence of a magnetic field due to magnetic moments of sublattices that have opposite directions and cancel each other.

A typical phenomenon for the ferromagnetic materials is a magnetic hysteresis, i.e.a change in the intrinsic magnetic field strength of a ferromagnet upon increase or decrease of an external magnetic field strength. A hysteresis loop of a ferromagnetic material is usually symmetrical over the point of origin. However, for materials that consist of two thin layers (an anti- and a ferromagnetic one) the hysteresis loop can be shifted over the origin point. This phenomenon is called the exchange bias and is explained to be caused by exchange coupling between ferromagnetic material with an antiferromagnetic one.

IKBFU physicists studied how the inhomogeneous magnetic field, applied during fabrication of thin films made from nickel-iron (NiFe) and iridium-manganese (IrMn), influence its properties.. The samples of thin films were made by the magnetron sputtering method. In this technology a target (a piece of a metal that should be sputtered) is bombarded by the inert atoms (e.g. atoms of a noble gas).

"We've demonstrated that the presence of an inhomogeneous magnetic field during the manufacture process of thin film exchange-coupled structures changes their magnetization reversal mechanism. If homogenous magnetic fields are used in this process, it leads to the classic shift of the hysteresis loop. Changes in the homogeneity of the magnetic field affect both the value of the loop shift and the shape of the loop in the NiFe/IrMn film structure. We demonstrated that a step-wise hysteresis loop can be obtained for the sample that was created in the area with the highest gradient of the magnetic field. The regularities we discovered will help increase the sensitivity of magnetic field detectors," says Valeria Rodionova, a co-author of the work, candidate of Physico-Mathematical Sciences, and the Head of the Laboratory for New Magnetic Materials of IKBFU.
-end-
The work was carried out together with scientists from Moscow State University, Tohoku University, University of New South Wales, and National University of Science and Technology MISiS.

Fig. 1. Visualization of a magnetic field between permanent magnets at the location of the substrate for the deposition of NiFe/IrMn film thin-film structure. Courtesy of Valery Rodionov.

Immanuel Kant Baltic Federal University

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.