Nav: Home

Space telescope detects water in a number of asteroids

December 17, 2018

Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time. This discovery will contribute to our understanding of the distribution of water in our solar system, the evolution of asteroids, and the origin of water on Earth.

The findings were made by the team led by the Project Assistant Professor Fumihiko Usui (Graduate School of Science, Kobe University), the Associate Senior Researcher Sunao Hasegawa, the Aerospace Project Research Associate Takafumi Ootsubo (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency), and Professor Emeritus Takashi Onaka (Graduate School of Science, University of Tokyo). The results were published on December 17 in the online Advanced Access edition of Publications of the Astronomical Society of Japan.

Our Earth is an aqua-planet, and is the only planet in our solar system where the presence of water on the planet surface has been confirmed. We are, however, not yet sure how our Earth acquired water. Recent studies have shown that other celestial bodies in our solar system have, or used to have, water in some form. Asteroids are considered to be one of the candidates that brought water to Earth. Note that the liquid water is not flowing on the surface of asteroids, but water is retained in asteroids as hydrated minerals, which were produced by chemical reactions of water and anhydrous rocks that occurred inside the asteroids, that is, aqueous alteration. Hydrated minerals are stable even above the sublimation temperature of water ice. Thus, by looking for hydrated minerals, we can investigate whether asteroids have water.

Infrared wavelengths contain characteristic spectral features of various substances, such as molecules, ice, and minerals, which cannot be observed at visible wavelengths. Therefore, it is indispensable to observe at infrared wavelengths for the study of solar system objects. Hydrated minerals exhibit diagnostic absorption features at around 2.7 micrometers. The absorption of water vapor and carbon dioxide in the terrestrial atmosphere prevents us from observing this wavelength with ground-based telescopes. It is absolutely necessary to make observations from outside of the atmosphere, that is, in space. However, observations with space-borne telescopes have been scarce; the Infrared Space Observatory (ISO), launched in 1995, did not have a sufficient sensitivity to make spectroscopy of faint asteroids and the Spitzer Space Telescope, launched in 2003, did not have a coverage of this wavelength range. For this reason, it has not fully been understood how much water is contained in asteroids.

The Japanese infrared satellite AKARI, launched in February 2006, was equipped with the Infrared Camera (IRC) that allowed us to obtain spectra at near-infrared wavelengths from 2 to 5 micrometers. Using this unique function, the spectroscopic observations of 66 asteroids (figure 1) were carried out and their near-infrared spectra were obtained. This provides the first opportunity to study the features of hydrated minerals in asteroids at around the wavelength of 2.7 micrometers.

The observations detected absorption, which were attributed to hydrated minerals for 17 C-type asteroids (figure 2). C-type asteroids, which appear dark at visible wavelengths, were believed to be rich in water and organic material, but the present observations with AKARI are the first to directly confirm the presence of hydrated minerals in these asteroids. The absorption strength detected at around 2.7 micrometers varies for each asteroid, and some show absorption features of other substances, such as water ice and ammonia-rich material at around 3.1 micrometers.

When examining C-type asteroids in more detail, the research team discovered a clear relationship between the wavelength of the deepest absorption and the depth of the absorption for the 2.7 micrometers feature (figure 3). This shows a trend seen in the process where hydrated minerals are being heated up and gradually losing water. The heating energy could be supplied by the solar wind plasma, micrometeorite impacts, or the decay heat from radioactive isotopes in the rocks. This trend had been predicted by meteorite measurements, but this is the first time that it has been confirmed in asteroids. Many C-type asteroids display this trend, suggesting that C-type asteroids were formed by the agglomeration of rocks and water ice, then aqueous alteration occurred in the interior of asteroids to form hydrated minerals, and finally C-type asteroids were heated and dehydrated.

On the other hand, rocky S-type asteroids were considered to not contain water, unlike C-type asteroids. In the present study, hydrated minerals were not detected in most S-types, but it was newly discovered that there are exceptional cases of a few asteroids that show slight signs of hydrated minerals. The signs of water found in such S-type asteroids were probably not generated by aqueous alteration as in C-types, but were produced by collisions of other hydrated asteroids, that is, it is the exogenous origin that brought about the hydrated minerals. Asteroid collisions with each other occasionally occur. At the early stage of the solar system formation, a number of small bodies including asteroids were larger than the present, and collisional events must have been more frequent. From the fact that Earth would have experienced collisions with many asteroids, it is imagined that at least some amount of water on Earth was brought from asteroids by such collisions.

This study has confirmed the presence of water in asteroids. Spectra of the observed asteroids show common patterns. The size and the distance from the sun of the asteroid can be considered as important factors making differences of the spectra. To fully understand the observed patterns, it is necessary to accumulate observations of more asteroids as well as to compare with the measurement of meteorites collected on Earth. Dr. Usui comments: "By solving this puzzle, we can make a significant step towards identifying the source of Earth's water and unveiling the secret of how life began on Earth".

AKARI completed its operation in November 2011. For the next opportunity to perform spectroscopy in 2.7 micrometer wavelength with space-borne telescope, we will have to wait until the launch of the James Webb Space Telescope by NASA, scheduled in 2021.

Currently, the Japanese asteroid explorer Hayabusa2 and the American OSIRIS-REx are surveying asteroids (162173) Ryugu and (101955) Bennu, respectively. Each explorer has a capability to make measurements in the 2.7 micrometer range to look for the signature of water. "In-situ" observations of asteroids with spacecrafts can provide detailed information about craters and topography, aspects that ground-based and Earth-orbiting telescopes cannot reveal. The present results significantly help increase the scientific values of the data obtained by the explorers and understand the properties of asteroids Ryugu and Bennu in details.
-end-


Kobe University

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.