Nav: Home

Fine-tuning thermoelectric materials for cheaper renewable energy

December 17, 2019

Researchers from Queen Mary University of London have developed new thermoelectric materials, which could provide a low-cost option for converting heat energy into electricity.

Materials known as halide perovskites have been proposed as affordable alternatives to existing thermoelectric materials, however so far research into their suitability for thermoelectric applications has been limited.

In this study, published in Nature Communications, scientists conducted a series of experiments on thin films of the halide perovskite, caesium tin iodide, to test its ability to create electrical current from heat. The researchers found they were able to improve the materials' thermoelectric properties through a combination of methods, which involved partial oxidation and the introduction of additional elements into the material.

Dr Oliver Fenwick, lead Royal Society University Research Fellow and Lecturer in Materials Science at Queen Mary University of London, said: "For many years halide perovskites have been suggested as promising thermoelectric materials. But whilst simulations have suggested good thermoelectric properties real experimental data hasn't met these expectations.

"In this study, we successfully used 'doping' techniques, where we intentionally introduce impurities into the material, to tweak and improve the thermoelectric properties of caesium tin iodide, opening up options for its use in thermoelectric applications."

Thermoelectric materials use temperature differences to generate electrical energy. They have been suggested as a promising sustainable approach to both energy production and recycling, as they can be used to convert waste heat into useful electricity. However, current widely-used thermoelectric materials are costly to produce and process, which has limited the uptake of this greener technology.

Dr Fenwick, said: "With the heightened global awareness of climate change and realisation that a number of renewable energy solutions will be needed to meet our energy demands, thermoelectric generators are now at the centre stage in today's "green technology" debate.

"The thermoelectric materials we currently have are expensive, and some even contain toxic components. One of the largest growth areas for thermoelectric technology is for domestic, commercial or wearable applications, so there's a need to find cheaper, non-toxic materials that can also operate well at low temperatures, for these applications to be fully realised. Our research suggests the halide perovskites could, with some fine-tuning, fill this void."
-end-
Notes to editors
  • Research paper: 'Enhanced control of self-doping in halide perovskites for improved thermoelectric performance'.Tianjun Liu, Xiaoming Zhao, Jianwei Li, Zilu Liu, Fabiola Liscio, Silvia Milita, Bob C. Schroeder & Oliver Fenwick. Nature Communications.
  • DOI: 10.1038/s41467-019-13773-3
  • This work was done in collaboration with researchers from University College London and CNR Bologna, Italy.
For a copy of the paper, please contact:

Sophie McLachlan
Faculty Communications Manager (Science & Engineering)
Queen Mary University of London
sophie.mclachlan@qmul.ac.uk
Tel: 020 7882 3787

About Queen Mary

Queen Mary University of London is a research-intensive university that connects minds worldwide. A member of the prestigious Russell Group, we work across the humanities and social sciences, medicine and dentistry, and science and engineering, with inspirational teaching directly informed by our world-leading research. In the most recent Research Excellence Framework we were ranked 5th in the country for the proportion of research outputs that were world-leading or internationally excellent. We have over 25,000 students and offer more than 240 degree programmes. Our reputation for excellent teaching was rewarded with silver in the most recent Teaching Excellence Framework. Queen Mary has a proud and distinctive history built on four historic institutions stretching back to 1785 and beyond. Common to each of these institutions - the London Hospital Medical College, St Bartholomew's Medical College, Westfield College and Queen Mary College - was the vision to provide hope and opportunity for the less privileged or otherwise under-represented. Today, Queen Mary University of London remains true to that belief in opening the doors of opportunity for anyone with the potential to succeed and helping to build a future we can all be proud of.

Queen Mary University of London

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.