Even resilient common species are not immune to environmental crisis

December 17, 2019

A recent study by scientists from the National University of Singapore (NUS) revealed that the current biodiversity crisis may be much broader than widely assumed, and may affect even species thought to be common and tolerant of fragmentation and habitat loss.

Specifically, the research team found that the effective population size and genetic diversity of a common fruit bat species - the Sunda fruit bat (Cynopterus brachyotis) - that was believed to remain widely unaffected by urbanisation, has shrunk significantly over the last 90 years. By comparing historic DNA from museum samples collected in 1931 and modern samples collected in 2011 and 2012, the NUS team found a nearly 30-fold reduction in effective population size and corresponding levels of decline in genetic diversity estimates.

"This bat species carries a genomic signature of a steep breakdown in population-genetic diversity. The extreme bottleneck event that led to a reduction in genetic diversity happened some time in the early Anthropocene (around the 1940s) when humans' impact on this planet became dominant," explained first author Dr Balaji Chattopadhyay, who recently finished a postdoctoral fellowship at the NUS Department of Biological Sciences at the Faculty of Science.

Understanding the decline in population-genetic diversity of the Sunda fruit bat

An effective pollinator and seed disperser, Cynopterus brachyotis represents an important keystone bat species in Singapore's ecosystem. This bat species is also widely distributed in human-dominated landscapes across tropical Southeast Asia.

In order to understand the effects of human-mediated changes such as urbanisation on the evolutionary trajectory of Singapore's population of Cynopterus brachyotis, the NUS team reconstructed and compared diverse models of historic demography. The researchers sequenced and examined over 634 million DNA reads of Cynopterus brachyotis genome and generated multiple datasets for the study.

Their findings suggest that Singapore's Cynopterus brachyotis population underwent a continuous decline that started approximately 195 generations ago (i.e. 1,600 years ago), and experienced a recent genetic bottleneck - or a sharp reduction in population size - nine generations ago, roughly in 1940. Genetic bottlenecks increase the vulnerability of a species to unpredictable events and can accelerate extinction of small populations. While bottlenecks following human interference have been documented in many endangered species, this study suggests that even common human commensals may not be immune to the effects of bottlenecks.

"Cynopterus brachyotis is a generalist fruit bat that tolerates urbanised settings. As such, it is an unlikely victim of habitat degradation and fragmentation. The unexpected loss in genetic diversity in this common species, largely due to urbanisation and human-mediated changes, indicates that the modern environmental crisis can generate adverse silent effects that only become apparent much later, when the impact of low genetic diversity may take hold in a population," explained Assistant Professor Frank Rheindt from the NUS Department of Biological Sciences, leader of the laboratory group that conducted the study.

"This phenomenon has been characterised as extinction debt, when actual extinction occurs with a time lag, long after the critical damage was done. Hence, an increased understanding of baseline levels and rates of loss of genetic diversity across organismic groups like Cynopterus brachyotis bats and habitats may, in the future, become imperative for informed conservation action," he added.

This research was conducted in collaboration with the National Parks Board (NParks) Singapore which supported the sampling of contemporaneous populations of the bats. The findings were published in the journal Current Biology on 16 December 2019.

"Our research also underscores the importance of strong museum collections facilitating the DNA-sampling of time series. More global support is needed for modern cryo-collections, which are generally under-funded," said Asst Prof Rheindt.

Asst Prof Rheindt is looking to extend the research by investigating multiple other animal species in Singapore and Southeast Asia to better characterise extinction risk.
-end-


National University of Singapore

Related Genetic Diversity Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

New DNA sequencing technique may help unravel genetic diversity of cancer tumors
Understanding the genetic diversity of individual cells within a cancer tumor and how that might impact the disease progression has remained a challenge, due to the current limitations of genomic sequencing.

Researchers uncover the arks of genetic diversity in terrestrial mammals
Mapping the distribution of life on Earth, from genes to species to ecosystems, is essential in informing conservation policies and protecting biodiversity.

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.

Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.

Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.

Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.

Read More: Genetic Diversity News and Genetic Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.