Limiting global warming would relieve populations from wet and dry extremes in China

December 17, 2019

Limiting global warming to a lower level, such as the 1.5°C Paris Agreement target, would substantially relieve populations from precipitation extremes in China, according to a study recently published in Science Bulletin.

The research, which is an extension of climate projections, sheds light on how extreme precipitation changes would translate into social impacts. Taking population into account, even a half-degree global warming increment could result in a robust increase in extreme rainfall-related impacts, particularly in the densely populated southeastern China.

"China has long been overwhelmed by precipitation extremes such as floods and droughts, as a result of the influences of monsoon, complex topography, and the large population. The accompanying social and economic losses are huge. In addition to traditional climate projections, decision-making also requires impact projections," said Prof. Tianjun Zhou, the corresponding author on the paper. Zhou is a senior scientist at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics at the Institute of Atmospheric Physics and CAS Center for Excellence in Tibetan Plateau Earth Sciences in the Chinese Academy of Sciences. He is also a professor at the University of Chinese Academy of Sciences.

Zhou and his team combined climate projections from CMIP5, an archive of comprehensive climate models, with socio-economic projections to investigate future climate changes and the accompanying impacts at various global warming thresholds. It is demonstrated that heavy precipitation events would intensify with global warming all over China, affecting all the populations around. Meanwhile, dry extremes would intensify in South China and exert adverse impact on the large population there.

"To understand the future impacts, we further separated the roles of future climate change and population redistributions. We found that climate change dominates the future impacts on population, while population redistributions play a minor role," said Prof. Zhou.

"Our results would, hopefully, provide useful information for mitigation and adaptation planning. Regional information is important in this regard. The uneven population distribution, particularly the dense population in southeastern China, has made it a hotspot in face of global warming as a consequence of high risks of both floods and droughts," Zhou said. "Hence, efficient and timely adaptation activities are in urgent need for this region."

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to