Turning light energy into heat to fight disease

December 17, 2019

WASHINGTON, D.C., December 17, 2019 -- An emerging technology involving tiny particles that absorb light and turn it into localized heat sources shows great promise in several fields, including medicine. For example, photothermal therapy, a new type of cancer treatment, involves aiming infrared laser light onto nanoparticles near the treatment site.

Localized heating in these systems must be carefully controlled since living tissue is delicate. Serious burns and tissue damage can result if unwanted heating occurs in the wrong place. The ability to monitor temperature increases is crucial in developing this technology. Several approaches have been tried, but all of them have drawbacks of various kinds, including the need to insert probes or inject additional materials.

In this week's issue of APL Photonics, from AIP Publishing, scientists report the development of a new method to measure temperatures in these systems using a form of light known as terahertz radiation. The study involved suspensions of gold nanorods of various sizes in water in small cuvettes, which were illuminated by a laser focused on a small spot within the cuvette.

The tiny gold rods absorbed the laser light and converted it to heat that spread through the water by convection. "We are able to map out the temperature distribution by scanning the cuvette with terahertz radiation, producing a thermal image," co-author Junliang Dong said.

The study also looked at the way the temperature varied over time. "Using a mathematical model, we are able to calculate the efficiency by which the gold nanorod suspensions converted infrared light to heat," said co-author Holger Breitenborn.

The smallest gold particles, which had a diameter of 10 nanometers, converted laser light to heat with the highest efficiency, approximately 90%. This value is similar to previous reports for these gold particles, indicating the measurements using terahertz radiation were accurate.

Although the smaller gold rods had the highest light-to-heat conversion efficiency, the largest rods -- those with a diameter of 50 nanometers -- displayed the largest molar heating rate. This quantity has been recently introduced to help evaluate the use of nanoparticles in biomedical settings.

"By combining measurements of temperature transients in time and thermal images in space at terahertz frequencies, we have developed a noncontact and noninvasive technique for characterizing these nanoparticles," co-author Roberto Morandotti said. This work offers an appealing alternative to invasive methods and holds promise for biomedical applications.
-end-
The article, "Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation," is authored by H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L.V. Besteiro, A. Skripka, Z. Wang, A.O. Govorov, L. Razzari, F. Vetrone, R. Naccache and R. Morandotti. The article will appear in the journal APL Photonics on Dec. 17, 2019 (DOI: 10.1063/1.5128524). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5128524.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See https://aip.scitation.org/journal/app.

American Institute of Physics

Related Nanoparticles Articles from Brightsurf:

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.