Distant milky way-like galaxies reveal star formation history of the universe

December 17, 2019

Look at this new radio image covered with dots, each of which is a distant galaxy! The brightest spots are galaxies that are powered by supermassive black holes and shine bright in radio light. But what makes this image special are the numerous faint dots filling the sky. These are distant galaxies like our own that have never been observed in radio light before.

To learn about the star-formation history of the universe, we need to look back in time. Galaxies throughout the universe have been forming stars for the past 13 billion years. But most stars were born between 8 and 11 billion years ago, during an era called "cosmic noon".

It has been a challenge for astronomers to study the faint light coming from this era. Optical telescopes can see very distant galaxies, but new stars are largely hidden inside dusty clouds of gas. Radio telescopes can see through the dust and observe the rare, bright starburst galaxies , but until now have not been sensitive enough to detect the signals from distant Milky Way-like galaxies that are responsible for most of the star formation in the universe.

An international team of astronomers using the South African Radio Astronomy Observatory (SARAO) MeerKAT telescope recently made the first radio observation sensitive enough to reveal these galaxies. "To make this image, we selected an area in the Southern Sky that contains no strong radio sources whose glare could blind a sensitive observation," said Tom Mauch of SARAO in Cape Town, South Africa, who led the team that published their results in The Astrophysical Journal.

The team used the 64 MeerKAT dishes to observe this area for a total of 130 hours. The resulting image shows a region of the sky that is comparable in area to five full Moons, containing tens of thousands of galaxies.

"Because radio waves travel at the speed of light, this image is a time machine that samples star formation in these distant galaxies over billions of years," explained co-author James Condon of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. "Because only short-lived stars that are less than 30 million years old send out radio waves, we know that the image is not contaminated by old stars. The radio light we see from each galaxy is therefore proportional to its star-forming rate at that moment in time."

The astronomers want to use this image to learn more about star formation in the entire universe. "These first results indicate that the star-formation rate around cosmic noon is even higher than was originally expected," said Allison Matthews, a graduate student at the University of Virginia and Grote Reber doctoral fellow at the NRAO. "Previous images could only detect the tip of the iceberg, the rare and luminous galaxies that produced only a small fraction of the stars in the universe. What we see now is the complete picture: these faint dots are the galaxies that formed most of the stars in the universe."

"Only in the last few years technology has developed to the point that we can build magnificent telescopes like South Africa's MeerKAT and have the computing power to create images like this one and get a real understanding of how the universe came to be the way it is," added NRAO astronomer William Cotton. "The next generations of instruments, the Square Kilometer Array and the next generation Very Large Array should be even more spectacular."
-end-
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

This research is presented in a paper titled "The 1.28 GHz MeerKAT DEEP2 Image," by T. Mauch et al., accepted for publication in The Astrophysical Journal. Preprint: http://arxiv.org/abs/1912.06212

National Radio Astronomy Observatory

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.