Plant-eating insects disrupt ecosystems and contribute to climate change

December 17, 2019

A new study from Lund University in Sweden shows that plant-eating insects affect forest ecosystems considerably more than previously thought. Among other things, the insects are a factor in the leaching of nutrients from soil and increased emissions of carbon dioxide. The researchers also establish that the temperature may rise as a result of an increase in the amount of plant-eating insects in some regions.

Using extensive meta-analysis, a research team at Lund University has for the first time examined how plant-eating insects affect soil processes in forest ecosystems globally. The study, which is published in Journal of Ecology, examines biological and biogeochemical reactions in the soil. When damaged plants, carcasses and secretion substances from insects fall to the ground, the turnover of carbon and nutrients increases. This leads to leaching from the forest floor and the release of more carbon dioxide.

"The number of plant-eating insects may increase due to climate change, especially in cold areas where a lot of carbon is sequestered in the ground. This will affect the forest ecosystems and lead to an increased release of greenhouse gases and a potential rise in temperature", says Dan Metcalfe, physical geography researcher at Lund University.

In the new study, researchers have established that insects and large mammals affect soil processes in a similar way, even though they have very different population patterns and feeding habits.

"Insects are more specialised in terms of food sources and can also increase their population by 50 to 100 times from one season to another. This means that plant-eating insects can sometimes disrupt forest ecosystems much more than plant-eating mammals", says Dan Metcalfe.

Tropical and northern forests account for 80 per cent of the world's total forested land area, but are very underrepresented in research literature. The researchers hope that the new results will be of practical use by being incorporated in climate models.

"Understanding how ecosystems work is crucial for being able to predict and combat climate change. Mammals are decreasing, whereas there is a lot to indicate that the number of insects will increase in some regions in a warmer world", concludes Dan Metcalfe.
-end-


Lund University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.