How immune cells switch to attack mode

December 17, 2019

Macrophages have two faces: In healthy tissue, they perform important tasks and support their environment. However during an infection, they stop this work and hunt down the pathogens instead. Upon coming into contact with bacteria they change their metabolism drastically within minutes. This is shown by a new study under the leadership of the University of Bonn, which has now been published in the journal "Immunity". In the medium term, the results may lead to new vaccination strategies, but also to new approaches for combating autoimmune diseases.

Macrophages can practically "sniff out" intruders: Their cell surface contains numerous sensors, the Toll-like receptors. These work in a similar way to the olfactory receptors in the nose: They are activated when they encounter a specific chemical signal. The alarm they trigger then leads to a series of reactions inside the cell. "During this phase, macrophages initiate their inflammatory response," explains Mario Lauterbach, who is completing his doctorate at the Institute of Innate Immunity at the University of Bonn. "How they change their metabolism in the first few minutes and what the consequences are has been unclear so far."

There are different groups of Toll-like receptors, each of which responds to different "smells". These are molecules that have emerged as important danger signals in the course of evolution. Among these are the so-called lipopolysaccharides (LPS), important components of the bacterial cell wall. "We have now confronted macrophages with LPS and investigated what happens in the following minutes and hours," explains Lauterbach.

The scientists were able to show that the cell metabolism changes dramatically shortly after LPS contact: Macrophages immediately absorb more glucose from their environment - but not primarily in order to obtain energy. Instead, they convert the sugar into so-called acetyl groups, which are small molecules related to acetic acid. These then serve as a kind of label in the cell nucleus: They are used to label genome sequences that are supposed to be read more intensively.

Acetyl groups loosen DNA

The DNA is actually a meter-long wafer-thin thread. It would, however, be difficult to store in this form. This is why it is rolled up on many small spools, the histones. Enzymes now attach the acetyl groups to certain parts of the histones. This process is stimulated by the increased acetyl group synthesis after the alarm is triggered, which ultimately loosens the coil of DNA and makes the corresponding genes more readable. "These include genes that are responsible for the release of inflammatory messengers or that improve the mobility of macrophages," explains Lauterbach.

It has long been known that the activation of Toll-like receptors alters the reading of genes. However, the mechanisms responsible for this differ from the one that has now been discovered. It is likely that this newly discovered mechanism allows the fine regulation of the genetic response. The results may therefore also provide new starting points, such as for improving the effectiveness of vaccinations. Toll-like receptors also play an important role in mediating the "learned" or aquired immune response. This arm of immunity increases the effectiveness of the defense mechanisms against infections that the body has already been through. Vaccinations strategies are also based on this principle.

Possible starting point for new therapies

In many diseases, such as rheumatism, diabetes or multiple sclerosis, the immune response is misdirected or too strong. "The mechanism we discovered might enable us to inhibit harmful inflammatory processes without suppressing the immune system too much," hopes Prof. Dr. Eicke Latz, head of the Institute of Innate Immunity. Instead of permanently hunting down (non-existent) invaders, the macrophages could concentrate again on their important tasks.

One reason why it was possible to shed light on the immune mechanism is the excellent cooperation between the University of Bonn, the TU Braunschweig and the LMU Munich. This success is also a result of the Cluster of Excellence ImmunoSensation, of which Latz is a member.
-end-
Publication: Mario A. Lauterbach, Jasmin E. Hanke, Magdalini Serefidou, Matthew S. J. Mangan, Carl-Christian Kolbe, Timo Hess, Maximilian Rothe, Romina Kaiser, Florian Hoss, Jan Gehlen, Gudrun Engels, Maike Kreutzenbeck, Susanne V. Schmidt, Anette Christ, Axel Imhof, Karsten Hiller & Eicke Latz: Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase; Immunity; DOI: 10.1016/j.immuni.2019.11.009

Contact:

Mario Lauterbach
Institute of Innate Immunity at the University of Bonn
Tel. +49-228-287-51227
E-Mail: mario.lauterbach@uni-bonn.de

Prof. Dr. Eicke Latz
Institute of Innate Immunity at the University of Bonn
Co-spokesperson of the Cluster of Excellence „ImmunoSensation"
Tel. +49-228-287-51239
E-Mail: eicke.latz@uni-bonn.de

University of Bonn

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.