And then there was light

December 17, 2019

Light provides the energy that plants and other photosynthetic organisms need to grow, which ultimately yields the metabolites that feed all other organisms on the planet. Plants also rely on light cues for developing their photosynthetic machinery and to sync their life cycles around daily and seasonal rhythms.

For example, photoreceptor pathways in plants allow them to determine how deep a seed is in the soil, to "measure" the waning daylight hours and to alter a plant's development to prepare it for the onset of summer or the beginnings of winter.

New research from Washington University in St. Louis provides insight into how proteins called phytochromes sense light and contribute to how plants grow. The paper is published this week in the Proceedings of the National Academy of Sciences.

"Phytochromes are unique among photoreceptors because they exist in two stable yet interconvertible states: an inactive form that is synthesized in the dark and another that requires light for activation," said Richard D. Vierstra, the George and Charmaine Mallinckrodt Professor of Biology in Arts & Sciences.

"By measuring the proportions of these two forms as they flip back and forth, phytochromes can sense light intensity, duration, light color and even day length. How these dark and light forms differ has remained enigmatic despite 60 years of research on photoreceptors."

Vierstra and his collaborators overcame a major hurdle toward defining the sequence of events that support the transition between light- and dark-adapted states.

They discovered and characterized a crystal form of the photoreceptor PixJ from the cyanobacterium Thermosynechococcus elongatus -- one that allows reversible photoconversion between the active and inactive forms. Remarkably, the crystals retain their integrity during the photoconversion process. Sethe Burgie, research scientist in biology in Arts & Sciences and first author of the paper, was able to collect the high resolution X-ray diffraction data necessary for identifying intermediates of the reaction pathway, using a sophisticated technique called X-ray crystallography.

Researchers should now be able to use newly developed X-ray free-electron lasers to acquire structural snapshots of this phytochrome crystal as it initially absorbs light through its inactive photoreceptor to when it acquires its fully mature active state -- a process that is complete within a millisecond.

In a preliminary test, the Vierstra group was able to see the first twitch of the photoreceptor as the part of its chromophore that captures the light energy rotated upon photoactivation.

"In other words, it should now be possible to make an atomic-resolution molecular movie that outlines the structural transitions of the photoreceptor," Burgie said. "We are now at the cusp of defining the internal events and sequence of physical changes that happen within phytochromes as they move between biologically inactive and active states, which will ultimately help researchers to tinker with plants to improve their agricultural yield and sustainability."

Understanding the structural underpinnings of the photoconversion cycle is an important step toward developing modified phytochromes that endow crop plants with beneficial light-sensing properties.

"Additionally, as phytochromes sense both light and temperature, altering phytochrome function has great potential for tailoring crops better fit to specific environments and might help to expand the range of these crops," Vierstra said.

Washington University in St. Louis

Related Biology Articles from Brightsurf:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.

Read More: Biology News and Biology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to