A new playbook for interference

December 17, 2019

Particles can sometimes act like waves, and photons (particles of light) are no exception. Just as waves create an interference pattern, like ripples on a pond, so do photons. Physicists from the National Institute of Standards and Technology (NIST) and their colleagues have achieved a major new feat -- creating a bizarre "quantum" interference between two photons of markedly different colors, originating from different buildings on the University of Maryland campus.

The experiment is an important step for future quantum communications and quantum computing, which could potentially do things that classical computers can't, such as break powerful encryption codes and simulate the behavior of complex new drugs in the body. The interference between two photons could connect distant quantum processors, enabling an internet-like quantum computer network.

Using photons that originally had different colors (wavelengths) is important because it mimics the way a quantum computer would operate. For instance, visible-light photons can interact with trapped atoms, ions or other systems that serve as quantum versions of computer memory while longer-wavelength (near-infrared) photons are able to propagate over long distances through optical fibers.

Just as classical computers needed reliable ways to transmit, store and process electrons before complex, networked computing was possible, the NIST result brings the exchange of quantum computing information an important step closer to reality.

In their study, a collaboration between NIST and the Army Research Laboratory, physicists and engineers in adjacent buildings at the University of Maryland created two different and separate sources of individual photons. In one building, a group of rubidium atoms was prompted to emit single photons with a wavelength of 780 nanometers, at the red end of the spectrum of visible light. In the other building, 150 meters away, a trapped ion of barium was induced to emit photons with a wavelength of 493 nanometers -- nearly 40 percent shorter --toward the blue end of the spectrum.

Then the researchers had to make the blue photons dead ringers for the red ones. To do this, Alexander Craddock, Trey Porto and Steven Rolston of the Joint Quantum Institute, a partnership between NIST and the University of Maryland, and their colleagues mixed the blue photons with infrared light in a special crystal. The crystal used the infrared light to covert the blue photons into a wavelength matching the red ones in the other building while otherwise preserving their original properties. Only then did the team send the photons through a 150-meter optical fiber to meet up with the nearly identical red photons in the other building.

The photons were so similar that it was not possible to tell them apart in the experimental setup. Individual photons ordinarily act independently of one another. But due to the peculiar quantum nature of light, when two indistinguishable photons interfere with each other, their paths can become correlated, or dependent upon one another. Such quantum correlation can be used as a powerful tool for computing.

Sure enough, the researchers observed this correlation when pairs of the separately produced photons intersected. The pairs of photons passed through an optical component known as a beamsplitter, which could send them in one of two paths. Acting alone, each photon would do its own thing and would have a 50-50 chance of going through either path. But the two indistinguishable photons overlapped like waves. Because of their bizarre quantum interference, they stayed together and always went on the same path. Joining these once-independent photons at the hip, this interference effect can potentially perform many useful tasks in the processing of quantum information.

The researchers reported their findings online in a recent issue of Physical Review Letters.

A direct connection to quantum computing would come if the interference pattern is linked to another bizarre property of quantum mechanics known as entanglement. This phenomenon occurs when two or more photons or other particles are prepared in such a way that a measurement of a particular property -- for instance, momentum -- of one automatically determines the same property of the other, even if the particles are far apart. Entanglement lies at the heart of many quantum information schemes, including quantum computing and encryption.

In the team's experiment, the two photons were not entangled with the systems that generated them. But in future studies, said Porto, it should be relatively easy to entangle the red photons with the group of rubidium atoms that produced it. Similarly, the blue photons could be entangled with the trapped ion that produced them. When the two photons interfere, that connection would transfer the entanglement between red photon-rubidium atoms and blue photon-ion to become an entanglement between the rubidium atoms and the trapped ion.

It's this transfer of entanglement -- this transfer of information -- that underlies the potentially vast power of quantum computers, Porto noted.
For further information, see the report by the Joint Quantum Institute.

National Institute of Standards and Technology (NIST)

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.