Acute leukemia patients treated with common therapy have increased risk for heart failure

December 17, 2019

PHILADELPHIA -- Patients with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) who are treated with anthracyclines are at a heightened risk of heart failure--most often within one year of exposure to the chemotherapy treatment, according to a new study led by researchers at Penn Medicine.

To help identify a patient's risk for heart failure following the treatment, researchers developed a risk score based on clinical and echographic variables, including left ventricular ejection fraction (how much blood the LV pumps out with each contraction), myocardial strain, and cumulative treatment dose. Oncologists, authors say, can use the scoring system to classify patients as low or high risk for heart failure and then tailor their treatment plans accordingly. The risk score model and results of the study were published today in JACC: CardioOncology.

"While we are more effective at treating cancer, the improved survival rates have helped to unmask the cardiotoxic impact of some of the most common cancer therapies," said the study's corresponding author Marielle Scherrer-Crosbie, MD, PhD, director of the Cardiac Ultrasound Laboratory and a professor of Cardiovascular Medicine in the Perelman School of Medicine at the University of Pennsylvania. "Our hope, in creating this risk score system, is to help clinicians identify patients with the highest risk for potential cardiac damage, so they can more closely monitor the patients via a multidisciplinary approach."

Over the past decade, the incidence of acute leukemia in the United States has steadily increased. Advances in treatment during that time, however, have led to drastically improved survival, with mortality rates dropping by one percent each year from 2006 to 2015. Antracyclines remain a standard therapy for acute leukemia, and they are delivered as high doses over a very short period of time--a treatment schedule that increases toxicity. While previous research found patients with hematologic malignancies (cancer that begins in blood-forming tissues) had the highest rates of symptomatic heart failure, there is limited evidence on the comorbidities in adult patients with acute leukemia and little is known about the incidence and risk stratification of symptomatic heart failure in this population.

In this study, researchers analyzed data of 450 patients with ALL (when bone marrow makes too many lymphocytes, a type of white blood cell) or AML (when bone marrow makes abnormal myeloblasts--a type of white blood cell--red blood cells, or platelets). Of the patients studied, 40, or about 9 percent, developed symptomatic heart failure. The patients, on average, developed heart failure 10 months following exposure to treatment. Patients with AML had a higher incidence of heart failure compared to patients with ALL.

Researchers then developed a risk score, which ranged from 0 to 21, based on six clinically relevant variables and myocardial strain--a measure of strain on the heart muscles that can be calculated by echocardiography. The team assigned points to each of the variables: a baseline global longitudinal strain of greater than -15 percent (6 points); baseline LV ejection fraction of less than 50 percent, preexisting heart disease, AML (4 points each); cumulative anthracycline dose of greater than or equal to 250 mg/m (2 points) and older than 60 years of age (1 point).

The patients were divided into three subgroups based on their risk scores: low (0 to 6), moderate (7 to 13) and high (14 to 21). The majority of patients (318) were classified as low risk, while 112 were considered moderate and 20 classified as high risk for heart failure. The team found that 65 percent of patients classified as high risk developed heart failure, while only 1 percent of the patients in the low risk group did.

"While this is a significant step toward identifying patient risk for heart failure, additional studies are needed to determine the effectiveness of such a risk score in clinical practice," said the study's lead author Yu Kang, MD, PhD, a post-doctoral research fellow at Penn.
Additional Penn authors include Srinivas Denduluri, PhD, Benedicte Lefebvre, MD, Selina Luger, MD, Shannon McCurdy, MD, and Joseph Carver, MD.

The research was supported, in part, by a grant from the National Institutes of Health (NIH) (1R01HL130539-01).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $425 million awarded in the 2018 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Home Care and Hospice Services, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is powered by a talented and dedicated workforce of more than 40,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2018, Penn Medicine provided more than $525 million to benefit our community.

University of Pennsylvania School of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to