Pulp succeeded in diet? Determining the slenderization of wood pulp

December 17, 2020

Osaka, Japan - Researchers from the Institute of Scientific and Industrial Research at Osaka University have devised a new method to determine the degree of fibrillation in wood pulp. By taking advantage of the intrinsic optical birefringence of cellulose, they were able to measure the morphology change through optical retardation distribution. This work may lead to clear grading and smart utilization of renewable biomass, cellulose nanofibers.

Cellulose, the primary structural component of most plants, has been harvested by humanity for millennia as an important biomaterial for clothing, paper, and wooden structures. More recently, cellulose nanofibers have been produced, which have the advantage of various functionalities derived from the extended chain crystals that make up cellulose, including optical birefringence. Birefringence occurs when the effective speed of light inside a material depends on its polarization; in this case, whether the light is polarized parallel or perpendicular to the polymer chains.

Now, a team of scientists at Osaka University has developed an optical analysis system that can directly quantify the degree of fibrillation of wood pulps. Fibrillation is the process of decreasing the bundling of cellulose molecules in micro-scale pulp fibers to form nanoscale fibers. Compared with painstakingly measuring fiber widths with an electron microscope, this technique quickly and easily determines if the cellulose fibers are aligned or dispersed in random orientations. "Our system offers clear and quantifiable criteria for grading the quality of cellulose nanofibers," says first author Kojiro Uetani.

This is accomplished by observing cellulose fibers in a quartz flow cell with a birefringence microscope. The sample is illuminated from below with circularly polarized light, which has an electrical field orientation that rotates in space like a helix. Regions of the fibers with large birefringence will cause a larger optical retardation in the phase of the light. Using a birefringence microscope, the researchers were able to record this value pixel-by-pixel. They found that both the average optical retardation and its standard deviation were correlated with the degree of fibrillation. Large retardation values were associated with intact pulp fibers, while smaller values were seen with balloon-like structure in fibrillating pulps, and very small values occurred with dispersed nanofibers.

"We hope to promote the precise structure control and advanced use of wood pulps and cellulose nanofibers," says senior author Masaya Nogi. In addition to the results of the article described above, the team has also confirmed that it is possible to automatically determine the degree of fibrillation of unknown pulp samples by deep learning of retardation images. This system is expected to lead to a clearer and more automatic definition of the degree of fibrillation by artificial intelligence (AI) in the future and will become a key analysis technology for indicating the quality of pulp materials and cellulose nanofibers.
-end-
The article, "Direct determination of the degree of fibrillation of wood pulps by distribution analysis of pixel-resolved optical retardation," was published in Carbohydrate Polymers at DOI:
https://doi.org/10.1016/j.carbpol.2020.117460

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en

Osaka University

Related Cellulose Articles from Brightsurf:

Bacterial cellulose degradation system could give boost to biofuels production
Researchers have uncovered details of how a certain type of bacteria breaks down cellulose--a finding that could help reduce the cost and environmental impact of the use of biomass, including biofuel production.

Secret of plant dietary fibre structure revealed
Researchers from The University of Queensland and KTH Royal Institute of Technology in Sweden have uncovered the mechanics of how plant cell walls balance the strength and rigidity provided by cellulose with its ability to stretch and compress.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

How bacteria adhere to fiber in the gut
Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut.

Discovery reveals how plants make cellulose for strength and growth
The discovery unveils the molecular machinery that plants use to weave cellulose chains into cable-like structures called 'microfibrils.'

Cellulose for manufacturing advanced materials
The last decade has seen an increase in scientific publications and patents on cellulose, the most abundant natural polymer.

Towards a green future: Efficient laser technique can convert cellulose into biofuel
The plant product cellulose is the most abundant form of biomass globally and can be converted into useful products such as biofuels.

Breaking down stubborn cellulose in time lapse
Researchers at Graz Unversity of Technology in Austria have for the first time ever succeeded in visualizing at the single-molecule level the processes involved in a biological nanomachine, known as the cellulosome, as it degrades crystalline cellulose.

Coffee grounds show promise as wood substitute in producing cellulose nanofibers
Researchers at Yokohama National University (YNU) meticulously examined cellulose nanofibers extracted from spent coffee grounds, identifying them as a viable new raw source.

Printing complex cellulose-based objects
Researchers from ETH Zurich and the Swiss Federal Laboratories for Materials Science and Technology (Empa) have set a new world record: they 3D printed complex objects with higher cellulose content than that of any other additively manufactured cellulose-based parts.

Read More: Cellulose News and Cellulose Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.