Three-dimensional view of catalysts in action

December 17, 2020

For understanding the structure and function of catalysts in action, researchers of Karlsruhe Institute of Technology (KIT), in cooperation with colleagues from the Swiss Light Source SLS of Paul Scherrer Institute (PSI) in Switzerland and the European Synchrotron Radiation Facility (ESRF) in France, have developed a new diagnostic tool. Operando X-ray spec-troscopy visualizes the structure and gradients of complex technical catalysts in three dimensions, thus allowing us to look into functioning chemical reactors. The results are re-ported in Nature Catalysis. (DOI: 10.1038/s41929-020-00552-3)

Catalysis is indispensable for many branches. 95% of all chemicals are produced using catalysts. Catalysts also play a key role in energy technologies and environmental protection. Catalysts are materials used to accelerate chemical reactions in order to reduce energy consumption and undesired by-products. This chemico-physical principle is the basis of entire systems, examples being catalytic converters in cars or catalysts in power plants to remove pollutants from their exhausts. Technical and industrial catalysts are also applied in fertilizer and polymer production. Often, they must exhibit high pressure resistance and mechanical strength, while additionally operating under dynamic environmental condi-tions. Even smallest efficiency increases in the removal of pollu-tants, such as carbon monoxide, nitrogen oxides, and fine dust, from exhaust gases or in the production of green hydrogen will result in major advantages for humans and the environment. To improve existing catalytic materials and processes, however, exact understanding of their function is required. "Whether in a large chemical reactor, in a battery, or underneath your car - technical and industrial catalysts often have a highly complex structure," says Dr. Thomas Sheppard from the Institute for Chemical Tech-nology and Polymer Chemistry (ITCP) of KIT. "To really under-stand how these materials function, we need to take a look inside the reactor when the catalyst is working, ideally with an analytical tool to detect the complex 3D structure of the active catalyst."

Operando X-ray Spectroscopy Provides 3D Images and Major Chemical Information

Thomas Sheppard directed a study on automotive catalytic con-verters, the results of which are now reported in Nature Catalysis by the researchers involved from KIT, PSI, and ESRF. For their studies, the team used a newly developed setup and carried out tomography experiments at synchrotron radiation facilities in Swit-zerland and France. Computer tomography produces 3D images of a sample, including the exterior and interior, without needing to cut it open. By using a special reactor, the researchers performed to-mography and X-ray spectroscopy to track an active catalytic pro-cess. In this way, they succeeded in observing the 3D structure of an emission control catalyst under conditions just like those in a real automotive exhaust. This so-called operando X-ray spectros-copy provides not only the 3D structure of the sample, but also important chemical information.

Method Suited for Various Catalysts

"Since catalysts often have a rather complex and non-uniform structure, it is important to know whether the entire catalyst volume or only parts of it are performing their chemical function as intend-ed," explains Johannes Becher from ITCP, one of the main authors of the study. "Operando X-ray spectroscopy lets us see the specif-ic structure and function of every single piece. This tells us wheth-er the catalyst is performing at maximum efficiency or not and, more importantly, it helps us understand the underlying process-es." During reaction, the team observed a structural gradient of the active copper species within the catalyst, which could not be de-tected previously using conventional analytical tools. This is im-portant diagnostic information in the performance of emission con-trol catalysts. The method itself can be applied to many different catalysts and chemical processes.

New Opportunities for Materials and Reaction Diagnostics

The team's studies show how visualizing the chemical state of an active catalyst in 3D can bring new opportunities for materials and reaction diagnostics. "Until now, it was not possible to freely select any piece of a working catalyst and understand which reactions take place in there without disturbing it. Now, we can follow exactly which reactions are occurring, where, and why," says Professor Jan-Dierk Grunwaldt from ITCP. "This is the key to improving our understanding of chemical processes and designing better and more efficient catalysts in future." Studies using operando X-ray spectroscopy can be carried out at different synchrotron radiation sources, provided that an appropriate sample environment exists. The groups of Jan-Dierk Grunwaldt and Thomas Sheppard will continue their investigations as part of the new Collaborative Re-search Center "TrackAct" at KIT. "TrackAct" is aimed at under-standing and improving the design and efficiency of emission con-trol catalysts.
-end-
Original Publication

Johannes Becher, Dario Ferreira Sanchez, Dmitry E. Doronkin, Deniz Zengel, Debora Motta Meira, Sakura Pascarelli, Jan-Dierk Grunwaldt, Thomas L. Sheppard: Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nature Catalysis, 2020. DOI: 10.1038/s41929-020-00552-3

For the abstract, click https://www.nature.com/articles/s41929-020-00552-3

Contact for this press release:
Margarete Lehné,
stellv. Pressesprecherin,
Phone: +49 721 608-21157,
margarete lehne?kit edu

Being "The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Karlsruher Institut für Technologie (KIT)

Related Catalyst Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

A 40-year-old catalyst unveils its secrets
Activity of the industrial catalyst TS-1 relies on titanium pairs / important discovery for catalyst development

Hydrochloric acid boosts catalyst activity
A research team from the Technical University of Munich (TUM) led by chemist Johannes Lercher has developed a synthesis process which drastically increases the activity of catalysts for the desulfurization of crude oil.

Scientists get atomistic picture of platinum catalyst degradation
Degradation of platinum, used as a key electrode material in the hydrogen economy, severely shortens the lifetime of electrochemical energy conversion devices, such as fuel cells.

Methanol synthesis: Insights into the structure of an enigmatic catalyst
To render the production process more efficient, it would be helpful to know more about the copper/zinc oxide/aluminium oxide catalyst deployed in methanol production.

Ultrastable, selective catalyst for propane dehydrogenation developed
A group of Japanese scientists has developed an ultrastable, selective catalyst to dehydrogenate propane - an essential process to produce the key petrochemical substance of propylene - without deactivation, even at temperatures of more than 600°C.

Asymmetric iodoesterification of simple alkenes by concerto catalyst
Japanese researchers have succeeded in catalytic asymmetric iodoesterification from simple alkene substrates and carboxylic acids.

Catalyst enables reactions with the help of green light
For the first time, chemists at the University of Bonn and Lehigh University in Bethlehem (USA) have developed a titanium catalyst that makes light usable for selective chemical reactions.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
Heterogeneous catalysts are often preferred because of their robustness and lower operating costs, but homogenous catalysts still dominate when high selectivity is needed -- finding superior heterogeneous catalysts has been a challenge.

Read More: Catalyst News and Catalyst Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.