LSU health research suggests new mechanism to balance emotional behavior

December 17, 2020

New Orleans, LA - Research led by Si-Qiong June Liu, MD, PhD, Professor of Cell Biology and Anatomy at LSU Health New Orleans School of Medicine, discovered a surprising reciprocal interaction between chemicals in the brain resulting in accelerated loss of molecules that regulate brain cell communication. The research team's findings are published online in Nature Communications, available here.

Working in a rodent model, the researchers showed that the release of Gamma-Aminobutyric acid (GABA), an amino acid that acts as a neurotransmitter, hastens the breakdown of endocannabinoids in the brain. Endocannabinoids are naturally produced molecules that regulate how brain cells communicate, and their dysfunction can lead to neurological disorders. Endocannabinoids are produced "on-demand" and are removed when they are no longer needed. The researchers found that GABA upsets this delicate balance. Endocannabinoids are critically involved in several aspects of emotional memory processing, and the researchers found that memory formation through fear conditioning selectively speeds up their decline in the cerebellum. The findings reveal a potential therapeutic target to regulate the rate of degradation of endocannabinoids and provide an effective way to alter behavior.

"Endocannabinoids control emotional behavior," notes Dr. Liu. "Learning increased the release of the inhibitory neurotransmitter, GABA, and this was responsible for driving the change in endocannabinoid degradation. This form of plasticity is responsible for the formation of fear memory. Our findings suggest a novel mechanism for the physiological regulation of endocannabinoid signaling and for modulating emotional behavior."
-end-
Other members of the LSU Health New Orleans research team included Dr. Christophe J. Dubois, graduate student Jessica Fawcett-Patel and undergraduate student Paul A. Katzman.

This work was supported by National Science Foundation Grant IBN-0344559, Veterans Administration Grant BX003893 and National Institutes of Health Grants NS58867, R01NS106915, and MH095948, as well as an NIH COBRE grant, P30 GM106392.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's flagship health sciences university, LSU Health New Orleans includes a School of Medicine with branch campuses in Baton Rouge and Lafayette, the state's only School of Dentistry, Louisiana's only public School of Public Health, and Schools of Allied Health Professions, Nursing, and Graduate Studies. LSU Health New Orleans faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSU Health New Orleans research enterprise generates jobs and enormous economic impact. LSU Health New Orleans faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu, http://www.twitter.com/LSUHealthNO, or http://www.facebook.com/LSUHSC.

Louisiana State University Health Sciences Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.