Combined observations of neutron stars constrain their equation of state and the Hubble constant

December 17, 2020

Combining signals from multiple observations of neutron stars has allowed researchers to better understand the properties of ultra-dense matter and constrain the Hubble constant, which describes how fast the Universe is expanding, according to a new study. Neutron stars are the collapsed cores of massive stars and have greater densities than an atomic nucleus. However, little is known about the properties of matter under such conditions, which cannot be reached in Earth-bound laboratories. To study matter at these extremes, researchers turn to cosmic collisions - binary neutron star mergers. When neutron stars collide, they release both electromagnetic radiation and gravitational waves. Observations of these distinct signals from the same event, known as multi-messenger astronomy, can be used to study the state of immensely dense neutron star material and the expansion rate of the Universe. Tim Dietrich and colleagues developed an analytical framework that combined messengers from two neutron star mergers - the gravitational wave event GW170817 and its accompanying electromagnetic signals, and the gravitational wave-only event GW1904215. Combining these events with independent electromagnetic measurements of isolated neutron stars and calculations from nuclear physics theory, Dietrich et al. constrained the neutron star equation of state, which relates the mass and radius of each neutron star. The approach also provides a measurement of the Hubble constant; they find a value which is most consistent with previous measurements of the cosmic microwave background.

American Association for the Advancement of Science

Related Neutron Star Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

UMD astronomers find x-rays lingering years after landmark neutron star collision
It's been three years since the landmark detection of a neutron star merger from gravitational waves.

Microscopic deformation of a neutron star inferred from a distance of 4500 light-years
Gravitational waves, which are ripples in spacetime, have recently provided a new window to the universe.

Method proposed for more accurate determinations of neutron star radii
Neutron stars are the smallest and densest astrophysical objects with visible surfaces in the Universe.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

ALMA finds possible sign of neutron star in supernova 1987A
Based on ALMA observations and a theoretical follow-up study, scientists suggest that a neutron star might be hiding deep inside the remains of Supernova 1987A.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

How big is the neutron?
The size of neutrons cannot be measured directly: it can only be determined from experiments involving other particles.

The force is strong in neutron stars
Physicists at MIT and elsewhere have for the first time characterized the strong nuclear force, and the interactions between protons and neutrons, at extremely short distances.

New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.

Read More: Neutron Star News and Neutron Star Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to