New Bacterium May Aid War On Insect Pests

December 17, 1997

NASHVILLE - In the world of biological pest control, Bacillus thurengensis, Bt for short, is the king of insecticides.

For 30 years Bt, a bacterium with remarkable insecticidal properties, has been a pest-control mainstay for foresters, farmers, gardeners and homeowners in search of a safe, natural way to neutralize the bugs that bug them. As a form of biological pest control, it is the only bacterium from which widespread commercial applications have been possible, giving it, in effect, a microbial monopoly on insect control worth hundreds of millions of dollars.

But now a team of scientists from two laboratories at the University of Wisconsin-Madison, working in collaboration with scientists from DowElanco of Indianapolis, hopes to unleash a new bacterium with similar insect-thwarting properties. The bacterium, Photorhabdus luminescens, contains a toxin that has proven effective against a broad array of insect pests - from cockroaches to boll weevils - and promises to become a potent, safe and environmentally benign weapon in the war against insect pests.

"It's a voracious pathogen. One bacterial cell can kill an insect," says Jerald Ensign, a UW-Madison professor of bacteriology who, with then-graduate student David Bowen, discovered and characterized the toxic potential of Photorhabdus, a widely-dispersed, multiple strain bacterium that lives inside of and in symbiosis with soil-dwelling roundworms called nematodes.

The bacteria live inside the gut of nematodes that invade insects. Once inside an insect host, the bacteria are released from the nematode, kill the insect, and set up rounds of bacterial and nematode reproduction that turns the insect into a "protein soup," food for large numbers of nematodes.

"This makes Alien look like a cakewalk," says Richard ffrench-Constant, a UW-Madison professor of toxicology in the department entomology.

The Photorhabdus bacteria, in fact, do Alien one better: The corpses left behind by the bacteria glow in the dark as the microbe produces luminescent proteins in addition to potent insecticides.

The findings of the Wisconsin group were reported here today (Dec. 17) at the annual meeting of the Entomological Society of America.

After establishing that Photorhabdus luminescens was indeed an effective killer of a wide variety of insects, Bowen moved as a post-doctoral fellow to the lab of ffrench-Constant where he continued work on the biochemistry of the toxin and orchestrated a nationwide survey for new toxic strains of the bacterium. So far, that survey has yielded scores of new Photorhabdus strains.

The discovery of a diverse new family of insect-killing bacteria has added importance since, in recent years, some insects have already begun to exhibit resistance to the Bt toxin, raising fears that the biological pesticide may be losing its potency. By adding an entire family of lethal bacteria to the biological pest-control arsenal, the Wisconsin and DowElanco scientists have opened a potentially broad new front in the war on insect pests since each of the Photorhabdus strains produces its own variation on the toxin.

"What we have is a natural source, almost an infinite variety" of toxic molecules, says ffrench-Constant. "We can't afford to hook ourselves to a single bacterium or a single toxin."

The Photorhabdus toxin and the genes that produce it have been patented jointly by the Wisconsin and DowElanco scientists through the Wisconsin Alumni Research Foundation (WARF). The technology has been licensed to DowElanco.

In concentrated doses, the toxin can be used as a spray or fed directly to insects. The greatest potential application, however, lies in transferring the toxin-producing genes from the bacteria to crop plants. Already, scientists have transferred the genes that code for Bt's insect-thwarting properties to important crop plants. Next year, an estimated 3 million to 5 million acres of Bt transgenic corn will be planted in the Midwest alone.

"This deployment of Bt transgenic crops is perhaps the biggest artificial experiment on natural selection in insect populations since the introduction of synthetic insecticides half a century ago," according to ffrench-Constant.

The incentive to confer crop plants with their own insecticides is huge. Farmers now spend more than $575 million annually on chemical pesticides to protect just one crop: corn.

Bowen, working with colleagues Thomas Rocheleau and Michael Blackburn in ffrench-Constant's lab, has identified, cloned and sequenced the genes responsible for the Photorhabdus' toxin. Clones were independently derived at DowElanco as well.

The next step, already well underway, is to move those genes to any amenable crop plant. Bringing a product to the field, however, may still take anywhere from three to five years, says ffrench-Constant.

"The need for Bt replacements is critical before we have many crops in North America expressing a limited range of Bt toxins," says ffrench-Constant. "If we don't have them, it's an open invitation for natural selection to confer resistance on insects and we'll lose that control."
- Terry Devitt, (608) 262-8282;

University of Wisconsin-Madison

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to