APL researchers now able to map global space weather

December 18, 2000

Researchers at The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., (APL) are now able to simultaneously measure the magnetic and electrical fields over large areas of the ionosphere above the Earth's polar regions, providing the first continuous monitoring of electric currents between space and the upper atmosphere and generating the first maps of electric power flowing into the polar upper atmosphere. These advances will allow greatly improved understanding and forecasting of global space weather and help prevent disruption of communication and power systems when electromagnetic storms strike the nation.

The work, sponsored by the National Science Foundation, makes use of magnetometers carried on each of the 66 satellites of the Iridium System satellite constellation operating as a global satellite communications network. Circling the globe in 470-mile-high, polar orbits, they are providing continuous measurements of the magnetic fields above the Earth's poles. Scientists at JHU/APL have developed techniques to extract the signatures of electrical currents flowing between the atmosphere and space from the magnetic field readings. Maps of the electric current in space are then constructed in much the same way that normal weather maps are made from weather station readings.

At the same time, SuperDARN - the Super Dual Auroral Radar Network, a multinational network of a dozen radars spread around the poles to study the ionosphere, sponsored by NSF and NASA and led by APL scientist Dr. Raymond A. Greenwald - is bouncing radar signals off the same regions to measure the electric field and its minute-by-minute variations.

"By combining Iridium System and SuperDARN data, we're able for the first time to continuously map the powerful currents flowing between space and the Earth's upper atmosphere," says Brian J. Anderson, who leads APL's research effort. "This is a major achievement because monitoring this environment is extremely difficult due to its enormous volume, which can vary by a factor of 10 in one hour. The Iridium orbits are ideal for monitoring this big system because the current is funneled to the polar regions, where the satellites detect it."

Based on extensive experience working with magnetic field data from satellites, APL scientists were able to develop sophisticated signal processing techniques for automatically extracting needed signals from Iridium data so they could be combined in a useful way with SuperDARN data. "This was an essential part of the effort," says Anderson. "With so many satellites involved, any hands-on analysis of the data would have been impossible."

The maps of electrical current show dramatic shifts due to changes in the solar wind. These results will allow scientists to test computer models of Earth's space environment far more accurately and exhaustively than ever before. Preliminary maps of the power flow have revealed "hot spots" of energy flowing into the atmosphere at high altitudes, creating pockets of hot air that rise and create drag on spacecraft flying through them at altitudes below 300 miles.

"Timely, accurate space weather forecasts will give advance warning of electromagnetic storms that in the past have shown their ability to disrupt communications, degrade GPS accuracy, cripple electrical power grids, and menace astronauts, satellites and aircraft with dangerous levels of radiation," says Anderson.

Anderson presented his findings at the 2000 Fall Meeting of the American Geophysical Union in San Francisco on Dec. 15. More information is available at http://sd-www.jhuapl.edu/constel_mag_science .
-end-
The Applied Physics Laboratory is a not-for-profit laboratory and division of The Johns Hopkins University. APL conducts research and development primarily for national security and for nondefense projects of national and global significance. APL is located midway between Baltimore and Washington, D.C., in Laurel, Md.

Johns Hopkins University

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.