Researchers reveal new secrets of the brain

December 18, 2002

By peering through a window into the brains of living mice, researchers Cold Spring Harbor Laboratory have caught a groundbreaking glimpse of adult brain cells forming new connections. Their study upends the long-held tenet that the structure of adult brains is fixed, sheds light on processes that underlie learning and memory, and offers hope for future treatment of brain trauma and mental retardation.

In a paper in the December 19 issue of Nature, neurobiologist Karel Svoboda and his research team present the most convincing proof to date that the adult brain can rewire itself in response to outside world. While many neuroscientists had begun to speculate that adult brains might be more dynamic than once thought, neuroscience orthodoxy still held that adult brains are relatively stable, limiting learning and recovery from injury. Svoboda's team employed state of the art technology to show that new connections, called synapses, form and dissolve in the adult brain as the mice take in sensory information.

"If a few years ago you could have imagined in your wildest dreams the experiment you wanted to do, it would be this one," said Paul Adams a neurobiologist at the State University of New York, Stony Brook. "To show that, in a relatively short period of time, synapses grow in an adult brain."

The scientists created transgenic mice with neurons that expressed a fluorescent green protein. Then, they placed a small window over the part of the brain they wanted to study--the barrel cortex, a region associated with receiving information the mice gather with their whiskers. Every 24 hours for eight days and less frequently for the rest of a month, they checked to see which neurons sent out and retracted spines to form and eliminate connections with other neurons. To see if the changing connections were influenced by sensory input they cut every other whisker on the mice, creating a chessboard pattern in which each cut whisker was surrounded by uncut whiskers, and then let the mice explore an unfamiliar environment.

They found that the total number of synapses stayed relatively constant but the individual connections often changed. Some stuck around for only a few days and others, generally the thicker ones, stayed for the duration of the experiment. Significantly, connections formed and dissolved much more rapidly after the animals' whiskers were cut and they were placed in the novel environment, suggesting that the synapses changed according to new sensory input.

The Svoboda team theorizes that cells might reach out to each other, possibly randomly forming synapses which are then tested through experience--those that are useful are reinforced, growing thicker, while those that aren't wither away. Right now, however, the theory is pure speculation. Next, they hope to test whether synapses that are used more grow thicker.

Adult brains may forge new connections, but they are not nearly as malleable as developing brains, says Dr. Svoboda. His study hints that while adult neurons form and eliminate synapses between cells in their general vicinity, the large-scale organization of brain cells doesn't really change. In developing brains, however, the framework changes along with the synapses.

The research will likely pave the way for a whole host of other experiments looking for similar phenomenon in other regions of the brain associated with different types of learning, said Murray Sherman, also a neurobiologist at SUNY Stony Brook. Such studies should reveal something about the underlying mechanisms in degenerative diseases such as Alzheimer's and Parkinson's.

####


Cold Spring Harbor Laboratory

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.