Nanomaterials vulnerable to dispersal in natural environment

December 18, 2006

Laboratory experiments with a type of nanomaterial that has great promise for industrial use show significant potential for dispersal in aquatic environments -- especially when natural organic materials are present.

When mixed with natural organic matter in water from the Suwannee River -- a relatively unpolluted waterway that originates in southern Georgia -- multiwalled carbon nanotubes (MWNTs) remain suspended for more than a month, making them more likely to be transported in the environment, according to research led by the Georgia Institute of Technology.

Carbon nanotubes, which can be single- or multiwalled, are cylindrical carbon structures with novel properties that make them potentially useful in a wide variety of applications including electronics, composites, optics and pharmaceuticals.

"We found that natural organic matter, or NOM as we call it, was efficient at suspending the nanotubes in water," said Jaehong Kim, an assistant professor in the Georgia Tech School of Civil and Environmental Engineering.

The research will be published in the January issue of the American Chemical Society journal Environmental Science & Technology. Kim is the senior author and conducted the research with Professor Joseph Hughes, graduate student Hoon Hyung, both at Georgia Tech, and postdoctoral researcher John Fortner from Georgia Tech and Rice University. The U.S. Environmental Protection Agency funded the research.

"We don't know for certain why NOM is so efficient at suspending these nanotubes in the laboratory," Kim said. "We think NOM has some chemical characteristics that promote adhesion to the nanotubes more than to some surfactants. We are now studying this further."

In the lab, Kim and his colleagues compared the interactions of various concentrations of MWNTs with different aqueous environments organic-free water, water containing a 1 percent solution of the surfactant sodium dodecyl sulfate (SDS), water containing a commercially available sample of Suwannee River NOM and an actual sample of Suwannee River water from the same location as the commercially available preparation. They agitated each sample for one hour and then let it sit for up to one month.

The researchers then used transmission electron microscopy (TEM), measurements of opacity and turbidity, and other analyses to determine the behavior of MWNTs in these environments. The results were: In addition, Kim and his colleagues used TEM to find that most MWNTs in both samples of NOM were suspended as individually dispersed nanotubes, rather than being clustered together as some other nanomaterials do in water. "This individual dispersion might make them more likely to be transported in a natural environment," Kim explained.

In light of these findings, Kim and his colleagues have expanded their research to other nanomaterials, including single-walled carbon nanotubes and C60, the so-called "buckyball" molecules in the same family as carbon nanotubes. They are also experimenting with other NOM sources and studying different mixing conditions. "We are getting some interesting results, though our findings are still preliminary," Kim noted.

While researchers explore applications of nanomaterials and industry nears commercial manufacture of these novel products, it's essential for scientists and engineers to study the materials' potential environmental impact, Kim added.

"Natural organic matter is heterogeneous," he explained. "It's a complex mixture made from plants and microorganisms, and it's largely undefined and variable depending on the source. So we have to continue to study nanomaterial transport in the lab using various NOM sources to try to better understand their potential interaction in the natural environment."

In related research, Kim's research team is studying various other aspects of the fate of nanomaterials in water -- including photochemical and chemical reactions of C60 colloidal aggregates -- with the ultimate goal of understanding the environmental implications of nanotechnology.
-end-
RESEARCH NEWS & PUBLICATIONS OFFICE

Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

MEDIA RELATIONS CONTACT: TECHNICAL CONTACTS: WRITER: Jane M. Sanders

Several images are available from www.gtresearchnews.gatech.edu.

Georgia Institute of Technology

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.