Mutant gene identified as villain in hardening of the arteries

December 18, 2007

New Haven, Conn.--A genetic mutation expands lesions in the aorta and promotes coronary atherosclerosis, more commonly known as hardening of the arteries, according to a study by Yale School of Medicine in Cell Metabolism.

The researchers found that mice engineered without the Akt1 gene and fed a high cholesterol diet had many more signs of aortic atherosclerosis compared to their littermates. And, surprisingly, their coronary lesions were similar to humans, say the scientists.

"About 20 percent of the mice died spontaneously, perhaps due to an acute heart attack," said William Sessa, senior author of the study, professor of pharmacology, and director of Yale's vascular biology and therapeutics program.

Atherosclerosis is a chronic inflammatory response in arterial walls, in large part due to deposits of lipoproteins--which are plasma proteins that carry cholesterol and triglycerides. The "hardening" or "furring" of the arteries is caused by plaque formation.

In the vascular wall, Akt plays an important role in regulating the development of endothelial cells, which line the entire circulatory system, from the heart to the smallest capillary. Endothelial cells play an important role in regulating blood pressure, in blood clotting, in plaque formation in the arteries, and in formation of new blood vessels.

"The major finding of this study is that an absence of Akt1 aggravates atherosclerotic lesions, promotes coronary atherosclerosis, and may be a model of acute coronary syndromes," Sessa said. "Specific activation of Akt1 may provide a therapeutic approach to decrease formation of lesions in the arterial wall and promote plaque stabilization to prevent an acute heart attack."

One concern, he said, is that specific drugs are being developed to inhibit Akt in cancer patients to reduce progression of tumors, and that these drugs may also promote hardening of the arteries.
-end-
Co-authors include Carlos Fernandez-Hernando, Eric Ackah, Jun Yu, Yajaira Suarez, Takahisa Murata, Yasuko Iwakiri, Jay Prendergast, and Robert Miao, of Yale, and Morris Birnbaum of the Howard Hughes Medical Institute and the University of Pennsylvania School of Medicine.

Cell Metabolism 6: 446-457 (December 2007)

Yale University

Related Atherosclerosis Articles from Brightsurf:

How hormone therapy slows progression of atherosclerosis
As one of the most common treatments for effectively managing menopause symptoms, hormone therapy (HT) is also known to provide multiple health benefits, including slowing the progression of atherosclerosis.

T cells can shift from helping to harming in atherosclerosis
At La Jolla Institute for Immunology (LJI) researchers are dedicated to finding a way to stop plaques from forming in the first place.

New nanoparticle drug combination for atherosclerosis
Physicochemical cargo-switching nanoparticles (CSNP) designed by KAIST can help significantly reduce cholesterol and macrophage foam cells in arteries, which are the two main triggers for atherosclerotic plaque and inflammation.

Atherosclerosis -- How a microRNA protects vascular integrity
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a hitherto unknown molecular function of a specific microRNA that preserves integrity of the endothelium and reduces the risk of atherosclerosis.

Atherosclerosis progresses rapidly in healthy people from the age of 40
A CNIC study published in JACC demonstrates that atheroma plaques extend rapidly in the arteries of asymptomatic individuals aged between 40 and 50 years participating in the PESA-CNIC-Santander study.

Scaling up a nanoimmunotherapy for atherosclerosis through preclinical testing
By integrating translational imaging techniques with improvements to production methods, Tina Binderup and colleagues have scaled up a promising nanoimmunotherapy for atherosclerosis in mice, rabbits and pigs -- surmounting a major obstacle in nanomedicine.

Bladder drug linked to atherosclerosis in mice
A drug used in the treatment of overactive bladder can accelerate atheroclerosis in mice, researchers at Karolinska Institutet in Sweden report in a study published in the Proceedings of the National Academy of Sciences (PNAS).

A new therapeutic target for blocking early atherosclerosis in progeria
Researchers at the Centro Nacional de Investigaciones Cardiovasculares and the Universidad de Oviedo have discovered a new molecular mechanism involved in the premature development of atherosclerosis in mice with Hutchinson-Gilford progeria syndrome.

Protective mechanism against atherosclerosis discovered
Immune cells promoting inflammation play a crucial role in the development of atherosclerosis.

Atherosclerosis: Stopped on time
For the first time, LMU researchers are pointing out the influence of the internal clock on atherosclerosis.

Read More: Atherosclerosis News and Atherosclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.