A simple fusion to jump-start evolution

December 18, 2008

With the aid of a straightforward experiment, researchers have provided some clues to one of biology's most complex questions: how ancient organic molecules came together to form the basis of life.

Specifically, this study, appearing online this week in JBC, demonstrated how ancient RNA joined together to reach a biologically relevant length.

RNA, the single-stranded precursor to DNA, normally expands one nucleic base at a time, growing sequentially like a linked chain. The problem is that in the primordial world RNA molecules didn't have enzymes to catalyze this reaction, and while RNA growth can proceed naturally, the rate would be so slow the RNA could never get more than a few pieces long (for as nucleic bases attach to one end, they can also drop off the other).

Ernesto Di Mauro and colleagues examined if there was some mechanism to overcome this thermodynamic barrier, by incubating short RNA fragments in water of different temperatures and pH.

They found that under favorable conditions (acidic environment and temperature lower than 70 C), pieces ranging from 10-24 in length could naturally fuse into larger fragments, generally within 14 hours.

The RNA fragments came together as double-stranded structures then joined at the ends. The fragments did not have to be the same size, but the efficiency of the reactions was dependent on fragment size (larger is better, though efficiency drops again after reaching around 100) and the similarity of the fragment sequences.

The researchers note that this spontaneous fusing, or ligation, would a simple way for RNA to overcome initial barriers to growth and reach a biologically important size; at around 100 bases long, RNA molecules can begin to fold into functional, 3D shapes.
-end-
From the JBC article: Nonenzymatic RNA Ligation in Water" by Samanta Pino, Fabiana Ciciriello, Giovanna Costanzo and Ernesto Di Mauro

Article link: http://www.jbc.org/cgi/content/abstract/M805333200v1

Corresponding Authors: Ernesto Di Mauro, Department of Genetics and Molecular Biology, Sapienza University of Rome, Italy; Tel: +39.06.49912880, E-mail: Ernesto.dimauro@uniroma1.it

American Society for Biochemistry and Molecular Biology

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.