Scientists study how asbestos fibers trigger cancer in human cells

December 18, 2008

COLUMBUS, Ohio - Ohio State University scientists believe they are the first in the world to study the molecular underpinnings of cancer by probing individual bonds between an asbestos fiber and human cells.

Though any clinical application is years away, the researchers hope their findings could aid in drug development efforts targeting illnesses caused by excessive exposure to asbestos, including the deadly cancer called mesothelioma.

The researchers use atomic force microscopy to observe how a single asbestos fiber binds with a specific receptor protein on cell surfaces. They suspect that at least one of the more lethal forms of asbestos triggers a cascade of events inside cells that eventually lead to illness, sometimes decades later.

The conditions most commonly associated with long-term exposure to airborne asbestos are lung cancer; asbestosis, a chronic respiratory disease; and mesothelioma, a cancer that forms in the membrane lining most internal organs of the body, including the lungs.

Eric Taylor, a doctoral candidate in earth sciences at Ohio State and a coauthor of the study, describes atomic force microscopy as "Braille on a molecular level," meaning it allows scientists to feel and observe what's happening on molecular surfaces.

"We're looking at what molecules are involved in the chain of events when the fiber touches the cell. Does the binding occur over minutes, or hours? And what processes are triggered?" said Taylor, who presented the research at the American Geophysical Union meeting in San Francisco.

Asbestos comprises six different minerals that naturally occur in both fragment and fibrous forms. Because of its high durability and heat resistance, the fibrous form has been used in many manufacturing products since the late 1800s. Though its use is now highly regulated, asbestos is still present in many materials. The U.S. Department of Labor estimates that 1.3 million employees face significant asbestos exposure on the job. Environmental exposure is also possible because asbestos is a naturally occurring mineral in soils and exposed bedrock.

Crocidolite, or blue asbestos, is part of the amphibole group of asbestos minerals, which were banned in most of the Western world by the mid-1980s. Before that, they were used in such products as ceiling tiles and thermal insulation.

Ohio State researchers have focused so far on the crocidolite form of asbestos, but eventually hope to study how all six forms of asbestos interact with certain proteins on cell surfaces. Some forms of asbestos can dissolve in the lungs if they are inhaled, but others are believed to essentially "stick" to cells, especially at high concentrations, and eventually cause lung diseases.

"For the first time, this will give us data on biological activity that should help policymakers determine which forms of asbestos are the most dangerous," said Steven Lower, associate professor of earth sciences at Ohio State and a coauthor on the study.

"The hypothesis we're testing is that binding of cell surface receptors to asbestos fibers triggers a signal event, which initiates the cancer," said Lower, also a faculty member in the School of Environment and Natural Resources. "There seems to be something intrinsic about certain types of asbestos, blue asbestos in particular, that elicits a unique signal, and it triggers inflammation, the formation of pre-malignant cells and, ultimately, cancer."

The first protein to be studied is epidermal growth factor receptor, which is present on the surface of every human cell. Understanding the intricacies of the binding process between the mineral and one or more proteins will provide an index of the biological activity of a particular type of asbestos, and might lead the researchers to figure out how to prevent or undo that interaction, Lower said.

Taylor said the driving motivation behind the research is the potential to find a way to intervene and prevent illness even after someone is exposed to asbestos. Mesothelioma symptoms don't typically appear until 30 to 50 years after exposure. After diagnosis, however, the cancer is difficult to control, and there is no cure.
-end-
This work is supported by the National Science Foundation.

Taylor and Lower conducted the research with Ann Wylie of the University of Maryland and Brooke Mossman of the University of Vermont.

Contact: Eric Taylor, (614) 247-8247; taylor.1317@osu.edu or
Steven Lower, (614) 292-1571; lower.9@osu.edu

Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

["The Strength of Disease: Molecular Bonds Between Asbestos and Human Cells" will be presented on Friday, December 19, 2008, at 1:40 p.m. PT (4:40 p.m. ET) at the American Geophysical Union meeting in San Francisco (Poster session B53B-0479, MC Hall D).]

Ohio State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.