New World post-pandemic reforestation helped start Little Ice Age, say Stanford scientists

December 18, 2008

The power of viruses is well documented in human history. Swarms of little viral Davids have repeatedly laid low the great Goliaths of human civilization, most famously in the devastating pandemics that swept the New World during European conquest and settlement.

In recent years, there has been growing evidence for the hypothesis that the effect of the pandemics in the Americas wasn't confined to killing indigenous peoples. Global climate appears to have been altered as well.

Stanford University researchers have conducted a comprehensive analysis of data detailing the amount of charcoal contained in soils and lake sediments at the sites of both pre-Columbian population centers in the Americas and in sparsely populated surrounding regions. They concluded that reforestation of agricultural lands-abandoned as the population collapsed-pulled so much carbon out of the atmosphere that it helped trigger a period of global cooling, at its most intense from approximately 1500 to 1750, known as the Little Ice Age.

"We estimate that the amount of carbon sequestered in the growing forests was about 10 to 50 percent of the total carbon that would have needed to come out of the atmosphere and oceans at that time to account for the observed changes in carbon dioxide concentrations," said Richard Nevle, visiting scholar in the Department of Geological and Environmental Sciences at Stanford. Nevle and Dennis Bird, professor in geological and environmental sciences, presented their study at the annual meeting of the American Geophysical Union on Dec. 17, 2008.

Nevle and Bird synthesized published data from charcoal records from 15 sediment cores extracted from lakes, soil samples from 17 population centers and 18 sites from the surrounding areas in Central and South America. They examined samples dating back 5,000 years.

What they found was a record of slowly increasing charcoal deposits, indicating increasing burning of forestland to convert it to cropland, as agricultural practices spread among the human population-until around 500 years ago: At that point, there was a precipitous drop in the amount of charcoal in the samples, coinciding with the precipitous drop in the human population in the Americas.

To verify their results, they checked their fire histories based on the charcoal data against records of carbon dioxide concentrations and carbon isotope ratios that were available.

"We looked at ice cores and tropical sponge records, which give us reliable proxies for the carbon isotope composition of atmospheric carbon dioxide. And it jumped out at us right away," Nevle said. "We saw a conspicuous increase in the isotope ratio of heavy carbon to light carbon. That gave us a sense that maybe we were looking at the right thing, because that is exactly what you would expect from reforestation."

During photosynthesis, plants prefer carbon dioxide containing the lighter isotope of carbon. Thus a massive reforestation event would not only decrease the amount of carbon dioxide in the atmosphere, but would also leave carbon dioxide in the atmosphere that was enriched in the heavy carbon isotope.

Other theories have been proposed to account for the cooling at the time of the Little Ice Age, as well as the anomalies in the concentration and carbon isotope ratios of atmospheric carbon dioxide associated with that period.

Variations in the amount of sunlight striking the Earth, caused by a drop in sunspot activity, could also be a factor in cooling down the globe, as could a flurry of volcanic activity in the late 16th century.

But the timing of these events doesn't fit with the observed onset of the carbon dioxide drop. These events don't begin until at least a century after carbon dioxide in the atmosphere began to decline and the ratio of heavy to light carbon isotopes in atmospheric carbon dioxide begins to increase.

Nevle and Bird don't attribute all of the cooling during the Little Ice Age to reforestation in the Americas.

"There are other causes at play," Nevle said. "But reforestation is certainly a first-order contributor."
-end-


Stanford University

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.