Ants aquaplaning on a pitcher plant

December 18, 2012

An insect-trapping pitcher plant in Venezuela uses its downward pointing hairs to create a 'water slide' on which insects slip to their death, new research reveals. The research was published today, 19 December, in the journal Proceedings of the Royal Society B.

Hairs on plants, called trichomes, are typically used to repel water. However, the Cambridge researchers observed that the hairs on the inside of Heliamphora nutans pitcher plants were highly wettable, prompting them to test whether this phenomenon is related to the trapping of insects.

They found that wetting strongly enhanced the slipperiness of the trap and increased the capture rate for ants almost three-fold - from 29 per cent when dry to 88 per cent when wet. Upon further examination, they found that the wetting affected the insects' adhesive pads while the directional arrangement of the hairs was effective against the claws.

Dr Ulrike Bauer, lead author of the paper from the University of Cambridge, said: "When the hairs of the plant are wet, the ants' adhesive pads essentially aquaplane on the surface, making the insects lose grip and slip into the bowl of the pitcher. This is the first time that we have observed hairs being used by plants in this way, as they are typically used to make leaves water repellent."

They also found that the plant used a wicking method during dryer times to pull moisture from the bowl of the pitcher up to the hairy trapping surface, enabling them to capitalise on this aquaplaning effect even when there is no rain.

Dr Bauer added: "This very neat adaptation might help the plants to maximise their nutrient acquisition."

The Heliamphora nutans pitcher plant lives on the spectacular table mountains of the Guyana Highlands in Southern Venezuela, between altitudes of 2000-2700m. The pitchers can grow up to 18 cm tall and 7 cm wide and trap mainly ants.
-end-
For additional information please contact:

Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk

Notes to editors:

1. The paper ''Insect aquaplaning' on a superhydrophilic hairy surface: how Heliamphora nutans Benth. pitcher plants capture prey' will be published in the 19 December edition of Proceedings of the Royal Society B.

2. The researchers would like to thank Ch'ien Lee and Robert Severitt for contributing photographs, and the Cambridge Philosophical Society for providing the researchers with the freedom to conduct purely curiosity-driven research.

3. Video and low resolution images available.

https://www.dropbox.com/home/Pitcher%20plant

University of Cambridge

Related Ants Articles from Brightsurf:

Ants swallow their own acid to protect themselves from germs
Ants use their own acid to disinfect themselves and their stomachs.

Ants adapt tool use to avoid drowning
Researchers have observed black imported fire ants using sand to draw liquid food out of containers, when faced with the risk of drowning.

Bees? Please. These plants are putting ants to work
This is the first plant species in the world found to have adapted traits that enables a mutually beneficial relationship with ants.

Ants use collective 'brainpower' to navigate obstacles
Ants use their numbers to overcome navigational challenges that are too large and disorienting to be tackled by any single individual, reports a new study in the open-access journal eLife.

Ants restore Mediterranean dry grasslands
A team of ecologists and agronomists led by Thierry Dutoit, a CNRS researcher, studied the impact of the Messor barbarus harvester ant on Mediterranean dry grasslands.

Risk aversion as a survival strategy in ants
Ants are excellent navigators and always find their way back to the nest.

Epigenetic switch found that turns warrior ants into forager ants
In 2016, researchers observed that they could reprogram the behavior of the Florida carpenter ant Camponotus floridanus.

Larger than life: Augmented ants
The first app of its kind allows users to interact with biodiversity research through augmented reality.

Ants: Jam-free traffic champions
Whether they occur on holiday routes or the daily commute, traffic jams affect cars as well as pedestrians.

Ants fight plant diseases
New research from Aarhus University shows that ants inhibit at least 14 different plant diseases.

Read More: Ants News and Ants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.