Polymer coatings based on molecular structures

December 18, 2013

A novel method developed by researchers from Karlsruhe Institute of Technology (KIT) and Jacobs University Bremen enables manufacturing of polymer layers with tailor-made properties and multiple functions: A stable porous gel (SURGEL) for biological and medical applications is obtained from a metal-organic framework (SURMOF) grown up on a substrate. The method is presented in the renowned Journal of the American Chemical Society.

Coating of solids with polymers plays a central role in many areas of technological, natural and life sciences. For example, implants for the human body e.g., cardiac pacemakers, stents, or joint prostheses, need to be coated with suitable biomaterials and then impregnated with medical agents to accelerate healing-in and suppress inflammations. KIT researchers now have developed a completely novel method for producing a gel from cross-linked organic components. "Compared to conventional polymer coatings, this gel stands out by the fact that the pore size of the layers can be specifically adapted to the bioactive substances e.g., to pharmaceutical agents, to be embedded," explains Professor Christof Wöll, Head of KIT's Institute of Functional Interfaces (IFG).

The gel fabrication method developed by researchers from the KIT Institute of Functional Interfaces (IFG), Institute for Biological Interfaces (ITG), and Institute for Organic Chemistry (IOC) together with the Jacobs University Bremen consists of several steps: First, a layer of a so-called metal-organic framework (MOF) is grown up on a solid substrate. In the obtained SURMOF (SURface-mounted Metal Organic Framework) layer, the size, shape, and chemical functionality of the pores can be tailored, so to speak. The layer itself, however, is not suited for use in biological environments: Its pronounced sensitivity to water causes it to be degraded very rapidly and the copper ions contained in that special type of SURMOF are toxic to living beings.

In view of the above, the molecular components in the SURMOF are cross-linked with another molecule in a second step using the particularly efficient so-called click chemistry method which already at room temperature allows a complete reaction. In a third step, one dissolves out the copper ions from the framework until obtaining the remaining cross-linked organic components that form a porous polymer. This SURGEL provides a uniformly thick layer and combines the advantages of the SURMOF with a high stability under biological conditions.

The potential for biological and medical applications was demonstrated by the researchers by impregnating the SURGEL with a bioactive molecule and then populating it with microbes. The behavior of these simple cells showed that the released messenger molecules were incorporated extremely efficiently. "This new material class opens up entirely new possibilities of influencing cellular growth," says Professor Martin Bastmeyer from KIT's Zoological Institute who together with Professor Wöll heads the program "BioGrenzflächen" (biointerfaces) supported by the Helmholtz Association.

Both implementation of the novel polymer coating and its subsequent biological characterization have been demanding interdisciplinary cooperation of researchers in organic chemistry, biology, and physical chemistry from KIT and theorists from Jacobs University Bremen.
-end-
Literature:

Manuel Tsotsalas, Jinxuan Liu, Beatrix Tettmann, Sylvain Grosjean, Artak Shahnas, Zhengbang Wang, Carlos Azucena, Matthew Addicoat, Thomas Heine, Joerg Lahann, Jörg Overhage, Stefan Bräse, Hartmut Gliemann, and Christof Wöll: Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal−Organic Frameworks. JACS - Journal of the American Chemical Society. DOI:10.1021/ja409205s

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.

Karlsruher Institut für Technologie (KIT)

Related Organic Chemistry Articles from Brightsurf:

Printing organic transistors
Researchers successfully print and demonstrate organic transistors, electronic switches, which can operate close to their theoretical speed limits.

Energy harvesting goes organic, gets more flexible
The race is on to create natural biocompatible piezoelectric materials for energy harvesting, electronic sensing, and stimulating nerves.

Researchers solve a long-standing problem in organic chemistry
Chemists have for a long time been interested in efficiently constructing polyenes - not least in order to be able to use them for future biomedical applications.

Organic heterostructures composed of one- and two-dimensional polymorph
A recent study facilely synthesized the OHSs composed of these two polymorph phases, whose growth mechanism is attributed to the low lattice mismatch rate of 5.8% between (001) plane of α phase (trunk) and (010) crystal plane of β phase (branch), Significantly, the multiport in/output channels can be achieved in the OHSs, which demonstrates the structure-dependent optical signals with the different output channels in the OHSs.

Green chemistry of fullerene: Scientists invented an environmentally friendly way to realize organic
Scientists from the Skoltech Center for Energy Science and Technology (CEST) and the Institute for Problems of Chemical Physics of Russian Academy of Sciences have developed a novel approach for preparing thin semiconductor fullerene films.

Let there be light: Synthesizing organic compounds
The appeal of developing improved drugs to promote helpful reactions or prevent harmful ones has driven organic chemists to better understand how to synthetically create these molecules and reactions in the laboratory.

Metal-organic framework nanoribbons
The nanostructure of metal-organic frameworks (MOFs) plays an important role in various applications since different nanostructures usually exhibit different properties and functions.

Next step in producing magnetic organic molecules
A team from the Ruhr Explores Solvation Cluster of Excellence at Ruhr-Universität Bochum has created new molecules with magnetic properties.

Verifying 'organic' foods
Organic foods are increasingly popular -- and pricey. Organic fruits and vegetables are grown without synthetic pesticides, and because of that, they are often perceived to be more healthful than those grown with these substances.

Water creates traps in organic electronics
Poor-quality organic semiconductors can become high-quality semiconductors when manufactured in the correct way.

Read More: Organic Chemistry News and Organic Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.