Researchers identify genetic marker of resistance to key malaria drug

December 18, 2013

WHAT:

An international team of researchers has discovered a way to identify, at a molecular level, malaria-causing Plasmodium falciparum parasites that are resistant to artemisinin, the key drug for treating this disease. The research team, which included scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, published their findings today in the journal Nature.

According to the World Health Organization, an estimated 627,000 people died of malaria in 2012. Artemisinin, in combination with other drugs, is the first-line treatment for malaria. In recent years, however, artemisinin-resistant malaria has appeared in patients in Southeast Asia, and researchers have begun exploring ways to maintain the drug's effectiveness. To monitor the spread of artemisinin resistance, scientists need a way to identify drug-resistant, malaria-causing parasites, the study authors write. They sought to fill this need by sequencing the complete genetic information of a laboratory-generated strain of artemisinin-resistant P. falciparum, and of both resistant and susceptible parasites found in nature in Cambodia, and then searching for links between the parasites' genes and resistance to the drug.

The researchers found that P. falciparum parasites with a mutant version of a gene called K13-propeller were more likely to survive exposure to artemisinin in the laboratory setting. Similarly, in malaria patients treated with the drug, parasites with the genetic mutation were eliminated more slowly. Further, they found that the geographical distribution of the genetic mutation in parasites in western Cambodia tracked with the spread of resistance among malaria patients in that region in recent years. Taken together, these results suggest that the mutant version of K13-propeller is associated with artemisinin resistance, according to the researchers. Future research will examine how the mutation causes resistance and explore whether this association extends to other regions of the world.
-end-
ARTICLE:

Ariey F et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. DOI: 10.1038/nature12876 (2013).

WHO:

Rick M. Fairhurst, M.D., Ph.D., chief of the Malaria Pathogenesis and Human Immunity Unit in NIAID's Laboratory of Malaria and Vector Research, is available to discuss the findings.

CONTACT:

To schedule interviews, please contact Nalini Padmanabhan, (301) 402-1663, padmanabhannm@niaid.nih.gov.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

NIH/National Institute of Allergy and Infectious Diseases

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.