How the Parkin enzyme inhibits neuronal cell death

December 18, 2013

Cell biologists at the Ruhr-Universität Bochum (RUB) have launched a new project to unravel the role of the enzyme Parkin in promoting neuronal survival. The team of Prof Dr Konstanze F. Winklhofer from the Institute of Physiological Chemistry, Department of Molecular Cell Biology, is looking for new therapeutic options to treat Parkinson's disease. The Michael J. Fox Foundation finances this research project with 125,000 US Dollars.

Parkin activates a signal pathway that protects neurons

Parkinson's disease is characterized by the degeneration of neurons that produce the neurotransmitter dopamine. In some cases, mutations in the Parkin gene are the underlying cause of this disease. The RUB researchers have recently discovered that Parkin regulates a signal pathway that protects neurons under cellular stress from damage. When the integrity of mitochondria, the cell's powerhouses, is impaired, Parkin is recruited to a protein complex called LUBAC (linear ubiquitin chain assembly complex) and increases its activity. A signal pathway is then activated that leads to the increased expression of protective factors, thus preventing cell death. The RUB team investigates the molecular mechanism of how parkin activates LUBAC and which other regulators play a role in this process. The goal of the project is to identify novel targets to halt or delay the neurodegenerative process in Parkinson's disease.
-end-
Further information

Prof Dr Konstanze Winklhofer, Institute of Physiological Chemistry, Faculty of Medicine at the Ruhr-Universität, 44780 Bochum, Germany, phone +49/234/32-22428, email: konstanze.winklhofer@rub.de

Editor: Dr Julia Weiler

Ruhr-University Bochum

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.