New technique provides novel approach to diagnosing ciliopathies

December 18, 2014

Cilia, the cell's tails and antennas, are among the most important biological structures. They line our windpipe and sweep away all the junk we inhale; they help us see, smell and reproduce. When a mutation disrupts the function or structure of cilia, the effects on the human body are devastating and sometimes lethal.

The challenge in diagnosing, studying and treating these genetic disorders, called ciliopathies, is the small size of cilia -- about 500-times thinner than a piece of paper. It's been difficult to examine them in molecular detail until now.

Professor Daniela Nicastro and postdoctoral fellow Jianfeng Lin have captured the highest-resolution images of human cilia ever, using a new approach developed jointly with Lawrence Ostrowski and Michael Knowles from the University of North Carolina School of Medicine. They reported on the approach in a recent issue of Nature Communications.

About 20 different ciliopathies have been identified so far, including primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD), two of the most common ciliopathies. They are typically diagnosed through genetic screening and examination of a patient's cilia under a conventional electron microscope.

The problem is, conventional electron microscopy is not powerful enough to detect all anomalies in the cilia, even when genetic mutations are present. As a result, the cause of ciliary malfunctions can be elusive and patients with ciliopathies can be misdiagnosed or undiagnosed.

Nicastro and her team developed an approach that includes advanced imaging technique that entails rapidly freezing human samples to preserve their native structure, imaging them with transmission electron microscopy, and turning those images into 3D models. This cutting-edge imaging was in part made possible by the advanced instrumentation in the Louise Mashal Gabbay Cellular Visualization Facility at Brandeis. It is the first time this approach has been used on human cilia and patient samples.

We have a new window into the structure and defects in human cilia.

"For so long, researchers haven't been able to see the small defects in human cilia," Nicastro says. "Now, we can fill in the pieces of the puzzle."
-end-


Brandeis University

Related Cilia Articles from Brightsurf:

Are the movements of tiny hairlike structures a key to our health?
New research from USC scholars identifies the mechanisms in play for cilia to work effectively and productively to push particles and fluid along, which is especially important given their critical role in health and in even ensuring reproduction.

Research reveals cilia's role in cardiovascular functions and genetic diseases
Research from Chapman University discover ciliary extracellular-like vesicles (cELVs). Released by fluid-shear, cELVs act as nano-compartments within a cilium.

Controlling artificial cilia with magnetic fields and light
Researchers have made artificial cilia, or hair-like structures, that can bend into new shapes in response to a magnetic field, then return to their original shape when exposed to the proper light source.

Unraveling mechanisms of ventricular enlargement linked to schizophrenia
Scientists at St. Jude Children's Research Hospital have implicated two microRNAs in the biological processes that underlie the ventricle enlargement observed in models of schizophrenia.

Scientists show how tiny, mutated neuron antennae impair brain connectivity
Axons are the long thread-like extensions of neurons that send electrical signals to other brain cells.

Downstream signaling: Cilia release ectosomes to deliver important messages in the kidney
Primary cilia are found on nearly all cell types and serve an important role in sensing external mechanical and chemical signals, likely through extracellular vesicles (EV) called ectosomes.

Zooming into cilia sheds light into blinding diseases
A new study reveals an unprecedented close-up view of cilia linked to blindness.

Structural protein essential for ciliary harmony in comb jellies
Researchers from the University of Tsukuba and the Japanese National Institute for Basic Biology identified a structural protein that is essential for the coordinated beating of millions of tiny cilia on the surface of comb jellies.

Defective cilia linked to heart valve birth defects
Bicuspid aortic valve (BAV), the most common heart valve birth defect, is associated with genetic variation in human primary cilia during heart valve development, report Medical University of South Carolina researchers in Circulation.

Defects in heart valve cilia during fetal development cause mitral valve prolapse
Genetic mutations in heart valve cells of the developing fetus lead to mitral valve prolapse, report a global collaborative of researchers, including Medical University of South Carolina investigators, in today's Science Translational Medicine.

Read More: Cilia News and Cilia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.