The case of the sticky protein

December 18, 2015

Proteins are like a body's in-house Lego set. These large, complex molecules are made up of building blocks called amino acids. Most of the time, proteins fold correctly, but sometimes they can misfold. This misfolding causes the proteins to get sticky, and that can promote clumping, or aggregation, which is the hallmark of several neurodegenerative diseases such as ALS, Alzheimer's and Parkinson's.

The protein's stickiness is a result of surface hydrophobic interactions that are important for many biological functions. The problem is that researchers don't have good tools to measure this stickiness with high sensitivity.

Now, an interdisciplinary team at Michigan Technological University has assembled new tools to solve the case of the sticky protein. Their work on improving hydrophobicity detection will be published in Scientific Reports Friday morning.

Using the fluorescent probes, the team measured hydrophobicity in three proteins: Bovine Serum Albumin (BSA), apomyoglobin and myoglobin. Compared to a commonly used commercial sensor (ANS), these new BODIPY-based hydrophobic sensors showed much stronger signal strengths, with up to a 60-fold increase in BSA.

"This is like going from having one 40-watt light bulb and then having 60 of them in the same room, just imagine the difference in illumination," says Ashutosh Tiwari, an associate professor of chemistry at Michigan Tech and the corresponding author for the study.
-end-


Michigan Technological University

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.