Nav: Home

Is evolution more intelligent than we thought?

December 18, 2015

Evolution may be more intelligent than we thought, according to a University of Southampton professor.

Professor Richard Watson says new research shows that evolution is able to learn from previous experience, which could provide a better explanation of how evolution by natural selection produces such apparently intelligent designs.

By unifying the theory of evolution (which shows how random variation and selection is sufficient to provide incremental adaptation) with learning theories (which show how incremental adaptation is sufficient for a system to exhibit intelligent behaviour), this research shows that it is possible for evolution to exhibit some of the same intelligent behaviours as learning systems (including neural networks).

In an opinion paper, published in Trends in Ecology and Evolution, Professors Watson and Eörs Szathmáry, from the Parmenides Foundation in Munich, explain how formal analogies can be used to transfer specific models and results between the two theories to solve several important evolutionary puzzles.

Professor Watson says: "Darwin's theory of evolution describes the driving process, but learning theory is not just a different way of describing what Darwin already told us. It expands what we think evolution is capable of. It shows that natural selection is sufficient to produce significant features of intelligent problem-solving."

For example, a key feature of intelligence is an ability to anticipate behaviours that that will lead to future benefits. Conventionally, evolution, being dependent on random variation, has been considered 'blind' or at least 'myopic' - unable to exhibit such anticipation. But showing that evolving systems can learn from past experience means that evolution has the potential to anticipate what is needed to adapt to future environments in the same way that learning systems do.

"When we look at the amazing, apparently intelligent designs that evolution produces, it takes some imagination to understand how random variation and selection produced them. Sure, given suitable variation and suitable selection (and we also need suitable inheritance) then we're fine. But can natural selection explain the suitability of its own processes? That self-referential notion is troubling to conventional evolutionary theory - but easy in learning theory.

"Learning theory enables us to formalise how evolution changes its own processes over evolutionary time. For example, by evolving the organisation of development that controls variation, the organisation of ecological interactions that control selection or the structure of reproductive relationships that control inheritance - natural selection can change its own ability to evolve.

"If evolution can learn from experience, and thus improve its own ability to evolve over time, this can demystify the awesomeness of the designs that evolution produces. Natural selection can accumulate knowledge that enables it to evolve smarter. That's exciting because it explains why biological design appears to be so intelligent."
-end-


University of Southampton

Related Evolution Articles:

Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...