Dartmouth engineers produce breakthrough sensor for photography, life sciences, security

December 18, 2017

HANOVER, N.H. -- Engineers from Dartmouth's Thayer School of Engineering have produced a new imaging technology that may revolutionize medical and life sciences research, security, photography, cinematography and other applications that rely on high quality, low light imaging.

Called the Quanta Image Sensor, or QIS, this next generation of light sensing technology enables highly sensitive, more easily manipulated and higher quality digital imaging than is currently available, even in low light situations, according to co-inventor Eric R. Fossum, professor of engineering at Dartmouth. Fossum also invented the CMOS image sensor found in nearly all smartphones and cameras across the world today.

Documented in the Dec. 20 issue of The Optical Society's OSA Optica, the new QIS technology is able to reliably capture and count the lowest level of light, single photons, with resolution as high as one megapixel, or one million pixels, and as fast as thousands of frames per second. Plus, the QIS can accomplish this in low light, at room temperature and while using mainstream image sensor technology, according to the Optica article. Previous technology required large pixels or cooling to low temperatures or both.

What does this mean for industry? For cinematographers, the QIS will enable IMAX-quality video in an easily edited digital format while still providing many of the same characteristics of film. For astrophysicists, the QIS will allow for the detection and capture of better signals from distant objects in space. And for life science researchers, the QIS will provide improved visualization of cells under a microscope, which is critical for determining the effectiveness of therapies.

Building this new imaging capability in a commercially accessible, inexpensive process is important, said Fossum, so he and his team made it compatible with the low cost and mass production of today's CMOS image sensor technology. They also made it readily scalable for higher resolution, with as many as hundreds of megapixels per chip.

"That way it's easier for industry to adopt it and mass produce it," said Fossum, who was recognized earlier this month at Buckingham Palace for his role in developing the CMOS image sensor. On Dec. 6, Charles, Prince of Wales, awarded Fossum the engineering equivalent of the Nobel Prize, the Queen Elizabeth Prize for Engineering.

"The QIS is a revolutionary change in the way we collect images in a camera," said Jiaju Ma who co-authored this month's Optica paper with Fossum, Saleh Masoodian and researcher Dakota Starkey who is currently pursuing his Ph.D. at Thayer. Ma and Masoodian received their Ph.D.s in electrical and electronics engineering from Thayer and are co-inventors of the QIS with Fossum.

The QIS platform technology is unique, according to Ma, because the sensor incorporates: With this combination, the QIS captures data from every single photon, or particle of light, enabling extremely high quality, easily manipulated digital imaging, as well as computer vision and 3-D sensing, even in low light conditions.

While the current QIS resolution is one megapixel, the team's goal is for the QIS to contain hundreds of millions to billions of these jots, all scanned at a very fast rate, said Ma.

Earlier this year, Masoodian, Ma and Fossum co-founded the startup company Gigajot Technology to further develop and apply the technology to a number of promising applications.
-end-
The research at Thayer School of Engineering at Dartmouth was performed in cooperation with Rambus, Inc., and the Taiwan Semiconductor Manufacturing Corporation.

To speak with any of the inventors, contact Callaway Zuccarello at 314.862.4300 or callaway.l.zuccarello@dartmouth.edu. For more information about Thayer School of Engineering at Dartmouth, visit http://www.dartmouth.edu.

More information: J. Ma, S. Masoodian, D. Starkey, and E. Fossum, "Photon-number-resolving megapixel image sensor at room temperature without avalanche gain," Optica 4, 1474-1481 (2017).

Provided by Thayer School of Engineering at Dartmouth

Dartmouth College

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.