Nav: Home

Russian physicists found the temperature at which carbon nanotubes become superconductors

December 18, 2017

Scientists from Ural Federal University (UrFU) together with their colleagues from Lomonosov Moscow State University found out the mathematical method to calculate the temperature at which single walled carbon nanotubes became superconductors and developed a way to increase it thus opening new prospects for superconductive materials application. The work was published in Carbonjournal.

Superconductivity is the basis of high-tech. Materials that are able to conduct electricity in full without any power losses due to the absence of resistance are used in cyclotrons, magnetic trains, power lines, and super-sensitive magnetometers (devices used to measure the Earth's magnetic field). Still, the main issue with superconductivity is that it is expressed at temperatures slightly above absolute zero (-273°C). If a material is superconductive around -70°C, it is aiming at a record. The leader among all materials is hydrogen sulfide frozen under incredible pressure - it becomes a superconductor at -70°C.

"Room temperature superconductivity is the dream of humanity. For example, your mobile phone does not need to recharge anymore and the electricity can run forever," says Dr. Chi Ho Wong, a postdoc of Ural Federal University and a co-author of the work.

The ability of carbon to form flat, one atom thick graphene sheets (separate graphite layers) has been attracting the attention of scientists for a long time. If we roll such a sheet to make a tube, we will get another interesting structure - a single walled carbon nanotube (SWCNT). These structures are highly tensile, refract light in an unusual manner and may be used in many areas from electronics to biomedicine. Atoms inserted in the walls of such tubes may change their properties, including conductivity. It may depend on the orientation of hexagons that form the carbon layer, on the filling of the tube, or on additionally inserted or attached atoms of other elements.

Single walled carbon nanotubes are being actively studied as prospective superconductors. However, their diameter equals only 4 angstroms (four tenth of a nanometer), therefore they are close to 1D materials. At temperatures close to absolute zero the so-called Cooper pairs of electrons are formed in them. In the lack of curvature it prevents the formation of Cooper pairs, and no superconductivity is observed.

"Our task was to change the 1D structure in order to increase the temperature of superconductive transition" comments Anatoly Zatsepin, the head of a scientific research laboratory at Institute of Physics and Technology, UrFU. "It turned out that if you pile SWCNTs up, Cooper pairs stabilize, and a superconductor is formed." Still, even such piles require quite low temperatures to exhibit superconductive properties - only 15 degrees above absolute zero.

Physicists found a solution for this issue as well. They added a one atom wide carbon "wire" inside SWCNTs. The chain itself does not form bonds with the atoms of the tube, but it makes the tube change its own geometry and flex.

When the team from UrFU changed the shape of the internal carbon chain from straight to zigzag-like, they managed to increase the temperature of superconductivity transition by 45 degrees. To achieve the best effect, the angles of zigzags were mathematically calculated, and the predictions proved to be correct.

«Nobody in the world could calculate the superconducting transition temperature of single walled carbon nanotube successfully since 2001. But we make it this year. Then based on our new method, we insert carbon chain inside the carbon nanotube to study the superconductivity" adds Dr. Chi Ho Wong.
The work was performed at the "Physics of functional materials for carbon micro- and optoelectronics" lab of UrFU in collaboration with the scientists from the Faculty of Physics of Lomonosov Moscow State University.

Ural Federal University

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
Superconductivity of pure Bismuth crystal at 0.00053 K
Scientists at TIFR Mumbai have discovered superconductivity of pure Bismuth crystal.
When crystal vibrations' inner clock drives superconductivity
Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor.
Physicists induce superconductivity in non-superconducting materials
Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.
A new spin on superconductivity
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices.
Superconductivity: After the scenario, the staging
Superconductivity with a high Tc continues to present a theoretical mystery.

Related Superconductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...