In the footsteps of Jacques Cousteau

December 18, 2017

FRANKFURT. In 1970, a team led by French ocean explorer Jacques Cousteau recovered an unusual stalactite from the depths of the famous Blue Hole in the Caribbean Sea. In the current issue of the "Journal of Sedimentary Research", geoscientist Eberhard Gischler of Goethe University Frankfurt explains what it reveals about our climate since the last ice age.

At the time, Jacques Cousteau's divers did not find any visible traces of living organisms in the mysterious Blue Hole. They did, however, find a large number of stalactites such as are known from karst caves. These are formed through the dissolution of limestone. Today the 125-metre-deep Blue Hole off the coast of Belize is flooded by the sea.

Frankfurt geoscientist Eberhard Gischler has been researching in Belize for over 25 years. He was given the unusual sample two years ago by Professor Robert Ginsburg at the University of Miami, with whom he worked in the 1990s as a postdoctoral researcher. Robert Ginsburg had in turn been given the stalactite by Jacques Cousteau immediately after it was found. Back then, he had the sample sawn into pieces and began to examine it together with marine geologist Bob Dill. Work did not, however, progress beyond a preliminary analysis. Added to this, the largest pieces of the stalactite went missing when the Ginsburg laboratory moved premises.

The cross section now being examined is the last specimen from Cousteau's stalactite. After almost 50 years, when the Blue Hole stalactite was in danger of being forgotten, Gischler, together with physicists from Goethe University Frankfurt and colleagues from the universities of Mainz, Hamburg and El Paso (USA) as well as GEOMAR in Kiel, has unveiled its secret.

By contrast to most stalactites, the outer layers of the Blue Hole stalactite are composed of marine deposits. Its concentric layers allow a detailed reconstruction of the climate in the late Pleistocene and the Holocene (the period from about 20,000 years ago to the present day). For example, the core formed during freshwater influx indicates surprisingly dry conditions during the Last Glacial Maximum and the following period (approximately 20,000 to 12,000 years before our time). The marine layers formed when the karst cave and the stalactite were flooded after the ice age by rising sea levels, i.e. over the last 11,000 years.

"Detailed climate reconstruction is, however, rendered difficult by the fact that the stalactite layers formed both on land as well as in seawater developed under the influence of microbial activity," explains Eberhard Gischler. The researchers are now decoding the types of microbial activity that influenced calcium precipitation during the stalactite's formation. On the basis of this study, it will be possible in future to make better use of the potential that stalactites with a complex formation history offer for the reconstruction of paleo-environmental conditions.

Together with doctoral researcher Dominik Schmitt, Gischler is currently working on other deposits in the shape of sediment drill cores up to 9 metres long, which were extracted from the floor of the Blue Hole in August. The sludge-like bottom sediment from the Blue Hole shows fine annual layering and will be used as a high-resolution storm and climate archive.
-end-
Shown in the picture is a cross section of the remarkable "Cousteau Stalactite", which was originally 2.84 metres long and weighed about a ton. It can meanwhile be found at the Department of Geosciences of Goethe University Frankfurt.

A picture as well as the cover of the "Journal of Sedimentary Research" with an aerial photograph of the Blue Hole can be downloaded from: http://www.uni-frankfurt.de/69629053

Goethe University Frankfurt

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.