New 'checkpoint' model that could identify potential drugs to treat genetic disorders

December 18, 2017

A new 'checkpoint' model which can be used to identify potential treatments for genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy (DMD) has been proposed by a team of Bradford scientists.

These disorders can be caused by a particular type of mutation in DNA, called a 'nonsense mutation'. This results in a pre-mature 'stop' instruction being issued to the cellular machinery that translates DNA into proteins - the molecules that do most of the work in the body's cells. This means the protein is unable to function normally, or may not even be produced at all, resulting in conditions which can be devastating for patients and their families.

Many of the new drugs under development to treat these genetic disorders aim to boost production of these proteins. They work by making the cellular machinery less sensitive to the premature 'stop' instructions, with the aim of reducing or eliminating the patient's symptoms. The research team at the University of Bradford has come up with a new model that can be used to develop screening tests for both genes and chemical compounds, published in the journal Human Molecular Genetics. They believe this could help scientists more effectively spot promising targets for drug development work. In their model, a compound needs to by-pass the pre-mature stop instruction only once in order to be useful in the treatment of genetic disorders. Importantly, the compounds would not bypass all stop signals, as this could allow harmful proteins to be generated.

Dr Talat Nasim, leading the research, explains: "Our model acts like a simple roadside checkpoint. Compounds which can fulfil certain criteria will enable some proteins to get past the pre-mature stop signal. Even a small amount of the right proteins would be enough to give some therapeutic protection, and that would lessen the symptoms of the disorder. Our model does not support the translational machinery to be re-programmed in such a way that it by-passes all stop signals. This would potentially generate proteins with many more mutated amino acids.

The team has also developed a number of more accurate cell-based screening assays based on this model. Using these techniques, they have screened hundreds of genes and have already identified two that are involved in the translation process and that could be targeted for drug development. The researchers have also screened more than 1000 existing FDA approved drugs collected by the National Institute of Neurological Disease Syndrome (NINDS) to see if they could be repurposed to treat genetic disorders caused by nonsense mutations - though none were shown to have any potential in this regard .

Additionally, the team has tested a compound called PTC124, first discovered in 2007, and reported in the journal Nature. The compound has been shown to boost production of the dystrophin protein in young patients with Duchenne muscular dystrophy caused by nonsense mutations. It is thought that PTC124 does this by making the cell by-pass the premature stop signal. Using the new methods, however, the researchers found that the compound does not work in this way. According to Dr Nasim the compound, developed under the brand name Translarna, may benefit patients via other mechanisms. The drug has conditional approval from the European Medicine's Agency. It is currently available in the UK and has been recommended as a treatment for young DMD patients with nonsense mutations by the National Institute for Health and Care Excellence (NICE). In the US, however the Food and Drug Administration has refused to grant a licence for the drug.

Dr Nasim believes the model developed by his team could help reduce the high costs of drug development work in this area by ruling out compounds that are unlikely to have any therapeutic benefit at an earlier stage in the process.
Notes to editors:

'Aminoglycoside-mediated promotion of translation readthrough occurs through a non-stochastic mechanism that competes with translation termination', by H M Chowdhury, M A Siddiqui, S Kanneganti, N Sharmin, M W Chowdhury, and M Talat Nasim, is published in Human Molecular Genetics.

About the University of Bradford

Founded in 1966, the University of Bradford is one of the UK's 'traditional' universities. It is a research-intensive insti tution, ranked in the top 50 in the UK for the quality of its research, with three quarters being classed as either world-leading or internationally excellent in the 2014 Research Excellence Framework (REF). The University was ranked No 1 in Yorkshire for employed graduates obtaining professional & managerial level jobs.

Known for its strong emphasis on employability skills and knowledge transfer work with businesses, the University has a truly global make up with over 20 per cent of its student population being international. The University is also a leader in sustainable development and education, and is the 6th greenest University in the world, according to the 2015 GreenMetric World University Rankings.

University of Bradford

Related Cystic Fibrosis Articles from Brightsurf:

Treating cystic fibrosis with mRNA therapy or CRISPR
The potential for treating cystic fibrosis (CF) using mRNA therapies or CRISPR gene editing is possible regardless of the causative mutation.

Cystic fibrosis: why so many respiratory complications?
Cystic fibrosis, one of the most common genetic diseases in Switzerland, causes severe respiratory and digestive disorders.

A newly discovered disease may lead to better treatment of cystic fibrosis
Cystic fibrosis is the most frequent severe inherited disorder worldwide.

New treatment kills off infection that can be deadly to cystic fibrosis patients
The findings, which are published in the journal Scientific Reports, show that scientists from Aston University, Mycobacterial Research Group, combined doses of three antibiotics -- amoxicillin and imipenem-relebactam and found it was 100% effective in killing off the infection which is usually extremely difficult to treat in patients with cystic fibrosis.

Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.

Rare mutations drive cystic fibrosis in Caribbean
Cystic Fibrosis (CF) in the Caribbean is dominated by unusual gene mutations not often observed in previously studied CF populations, according to comprehensive genome sequencing led by physician-scientists at UC San Francisco and Centro de Neumología Pediátrica in San Juan.

Cystic fibrosis carriers at increased risk of digestive symptoms
Researchers have found that carriers of the most common genetic variant that causes cystic fibrosis experience some symptoms similar to those of people with cystic fibrosis.

In cystic fibrosis, lungs feed deadly bacteria
A steady supply of its favorite food helps a deadly bacterium thrive in the lungs of people with cystic fibrosis, according to a new study by Columbia researchers.

Cibio knocks out cystic fibrosis
The fight against cystic fibrosis continues, targeting in particular some of the mutations that cause it.

Hypertonic saline may help babies with cystic fibrosis breathe better
Babies with cystic fibrosis may breathe better by inhaling hypertonic saline, according to a randomized controlled trial conducted in Germany and published in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

Read More: Cystic Fibrosis News and Cystic Fibrosis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to