Dengue 'Achilles heel' insight offers hope for better vaccines

December 18, 2017

Researchers have new insights into how protective antibodies attack dengue viruses, which could lead to more effective dengue fever vaccines and drug therapies.

The University of Queensland and China's ZhuJiang Hospital collaboratively led the study which identified an antibody that binds to, and kills, all four types of dengue virus.

The study also revealed the structural basis of the antibody binding to individual dengue viruses.

Dr Daniel Watterson, joint first author of the paper with Dr Jie Li, said that the antibody can block entry to the host cell, an essential step in the virus lifecycle.

"As it recognises all four dengue virus types, it provides the basis of a safe and broad-spectrum anti-dengue therapy as well as informing the next generation of dengue vaccines," he said.

He said the study shed light on the specific mechanism by which the dengue virus enters cells, and could help explain why some vaccines may not work, while providing a basis for dengue drug design.

"There are four distinct strains of dengue virus, and infection with one does not provide lasting protection against the others," Professor Cooper said.

"In addition, a secondary infection with a different strain is associated with an increased risk of severe disease, suggesting an immune enhancement of the disease."

Head of UQ's School of Chemistry and Molecular Biosciences Professor Paul Young said the work identified an important antibody-binding site on the dengue virus.

"We know from other studies that the dengue virus particle expands its outer shell in response to temperature as a sort of breathing," he said.

"But when we looked at the different stages of breathing that have already been recognised, we found that this antibody-binding site was still hidden.

"So our work indicates that there must be other, more open states of the virus. The findings have identified a new virus control target, a potential Achilles heel."

Professor Young said the spread of four distinct dengue virus types had posed significant hurdles to developing effective vaccines, as any potential vaccine candidate must elicit a strong and protective immune response against all four types.

However some antibody responses had been shown to strengthen the disease. This challenge has hindered dengue vaccine development for more than 60 years.

"This antibody was shown to inhibit but not enhance dengue virus infection and so presents exciting opportunities for control," Professor Young said.

"The emergence of Zika virus has further complicated vaccine design, and emphasizes the need to better understand the molecular mechanisms that underpin protective antibody responses."
-end-
The study is published in Structure (doi: 10.1016/j.str.2017.11.017) http://www.cell.com/structure/fulltext/S0969-2126(17)30371-4).

University of Queensland

Related Vaccines Articles from Brightsurf:

Comprehensive safety testing of COVID-19 vaccines based on experience with prior vaccines
'The urgent need for COVID-19 vaccines must be balanced with the imperative of ensuring safety and public confidence in vaccines by following the established clinical safety testing protocols throughout vaccine development, including both pre- and post-deployment,' write David M.

Safety of HPV vaccines in males
A new analysis published in the British Journal of Clinical Pharmacology shows that HPV vaccines are safe and well tolerated in the male population, and the side effects that may occur after immunization are similar in both sexes.

Model could improve design of vaccines, immunotherapies
Researchers have discovered a general property for understanding how immune cell receptors sense and respond to microbial signals, which could lead to more effective vaccines for both existing and novel viruses.

Better vaccines are in our blood
Red blood cells don't just shuttle oxygen from our lungs to our organs: they also help the body fight off infections by capturing pathogens in the blood and presenting them to immune cells in the spleen.

Challenges in evaluating SARS-CoV-2 vaccines
With more than 140 SARS-CoV-2 vaccines in development, the race is on for a successful candidate to help prevent COVID-19.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.

Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.

Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.

Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.

Read More: Vaccines News and Vaccines Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.