Nav: Home

Mystery of coronae around supermassive black holes deepens

December 18, 2018

Researchers from RIKEN and JAXA have used observations from the ALMA radio observatory located in northern Chile and managed by an international consortium including the National Astronomical Observatory of Japan (NAOJ) to measure, for the first time, the strength of magnetic fields near two supermassive black holes at the centers of an important type of active galaxies. Surprisingly, the strengths of the magnetic fields do not appear sufficient to power the "coronae," clouds of superheated plasma that are observed around the black holes at the centers of those galaxies.

It has long been known that the supermassive black holes that lie at the centers of galaxies, sometimes outshining their host galaxies, have coronae of superheated plasma around them, similar to the corona around the Sun. For black holes, these coronae can be heated to a phenomenal temperature of one billion degrees Celsius. It was long assumed that, like that of the Sun, the coronae were heated by magnetic field energies. However, these magnetic fields had never been measured around black holes, leaving uncertainty regarding the exact mechanism.

In a 2014 paper, the research group predicted that electrons in the plasma surrounding the black holes would emit a special kind of light, known as synchrotron radiation, as they exist together with the magnetic forces in the coronae. Specifically, this radiation would be in the radio band, meaning electromagnetic waves with a long wavelength and low frequency. And the group set out to measure these fields.

They decided to look at data from two "nearby," in astronomical terms, active galactic nuclei: IC 4329A, which is about 200 million light-years away, and NGC 985, which is approximately 580 million light-years away. They began by taking measurements using the ALMA observatory in Chile, and then compared them to observations from two other radio telescopes: the VLA observatory in the United States and the ATCA observatory in Australia, which measure slightly different frequency bands. The team found that indeed there was an excess of radio emission originating from synchrotron radiation, in addition to emissions from the "jets" cast out by the black holes.

Through the observations, the team deduced that the coronae had a size of about 40 Schwarzschild radii, the radius of a black hole from which not even light can escape, and a strength of about 10 gauss, a figure that is a bit more than the magnetic field at the surface of the Earth but quite a bit less than that given out by a typical refrigerator magnet.

"The surprise," says Yoshiyuki Inoue, the lead author of the paper, published in The Astrophysical Journal, "is that although we confirmed the emission of radio synchrotron radiation from the corona in both objects, it turns out that the magnetic field we measured is much too weak to be able to drive the intense heating of the coronae around these black holes." He also notes that the same phenomenon was observed in both galaxies, implying that it could be a general phenomenon.

Looking to the future, Inoue says that the group plans to look for signs of powerful gamma rays that should accompany the radio emissions, to further understand what is happening in the environment near supermassive black holes.


Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at